• University of Arkansas Tops Out Multi-User Silicon Carbide Research and Fabrication Facility

    University of Arkansas Tops Out Multi-User Silicon Carbide Research and Fabrication Facility

    2 Min Read

    The U of A celebrated a milestone with the topping-out of the Multi-User Silicon Carbide Research and Fabrication Facility.

    More than 100 students, faculty, state leaders and citizens were on hand to sign the steel topping-out beam and hear remarks from Kim Needy, dean of the College of Engineering, and Alan Mantooth, Distinguished Professor of electrical engineering. 

    The new semiconductor research and fabrication facility will produce microelectronic chips made with silicon carbide, a powerful semiconductor that outperforms basic silicon in several critical ways. The facility will enable the federal government – via national laboratories – businesses of all sizes and other universities to prototype with silicon carbide, a capability that does not presently exist elsewhere in the United States.

    Work at the research and fabrication facility will bridge the gap between traditional university research and the needs of private industry and will accelerate technological advancement by providing a single location where chips can go from developmental research to prototyping, testing and fabrication.

    The 21,760-square-foot facility, located next to the National Center for Reliable Electrical Power Transmission at the Arkansas Research and Technology Park, will address obstacles to U.S. competitiveness in the development of silicon-carbide electronics used in a wide range of electronic devices, circuits and other consumer applications. The building will feature approximately 8,000 square feet of clean rooms for fabrication and testing.

    Education and training within the facility will also accelerate workforce development, helping supply the next generation of engineers and technicians in semiconductor manufacturing.

    Original – University of Arkansas

    Comments Off on University of Arkansas Tops Out Multi-User Silicon Carbide Research and Fabrication Facility
  • SemiQ Launched a Known-Good-Die Screening Program

    SemiQ Launched a Known-Good-Die Screening Program

    2 Min Read

    SemiQ has begun a known-good-die (KGD) screening program that delivers high-quality, electrically sorted and optically inspected advanced SiC MOSFET technology ready for back-end processing and direct die attachment. 

    Known-good-die from SemiQ ensures consistent electrical parameters, enabling customers to rely on repeatable performance for high end-of-line yield when building equipment such as high-voltage supplies, traction inverters, and power conditioning systems. Uniform die parameters also simplify the connection of multiple devices in high-power modules. 

    “SiC is a powerful technology aiding the global drive for sustainability and our known-good-die SiC MOSFETs from SemiQ provide important performance advantages, such as near-constant junction capacitance, low insertion loss, and high isolation needed for high-frequency applications,” says Michael Tsang, VP, Product Engineering and Operations at SemiQ. “Thanks to this program, customers can receive quality-assured dies that will streamline and improve productivity and deliver predictable and repeatable performance in high-efficiency applications.”

    The KGD program is active now and applies to the complete portfolio of SemiQ’s QSiC™ 1200V SiC MOSFETs, ranging from 20mΩ to 80mΩ. This portfolio supports robust and efficient electrification across automotive, eMobility, renewable energy, industrial power, and other applications.

    KGD devices are supplied post-singulation on a choice of carrier media including blue tape, pre-cured UV tape, and tape and reel to ease integration with customers’ processes.  For more information, please visit SemiQ’s KGD page.

    Original – SemiQ

    Comments Off on SemiQ Launched a Known-Good-Die Screening Program
  • Transphorm and Weltrend Semiconductor Announced Availability of Two New GaN System-in-Packages

    Transphorm and Weltrend Semiconductor Announced Availability of Two New GaN System-in-Packages

    3 Min Read

    Transphorm, Inc. and the global leader in adapter USB Power Delivery (PD) Controller Integrated Circuits (IC) Weltrend Semiconductor Inc. announced availability of two new GaN System-in-Packages (SiPs). When combined with Weltrend’s flagship GaN SiP announced last year, the new devices establish the first SiP product family based on Transphorm’s SuperGaN® platform.

    The new SiPs—WT7162RHUG24B and WT7162RHUG24C—integrate Weltrend’s high frequency multi-mode (QR/Valley Switching) Flyback PWM controller with Transphorm’s 150 mΩ and 480 mΩ SuperGaN FETs respectively. Like their 240 mΩ predecessor (WT7162RHUG24A), the devices pair with USB PD or programmable power adapter controllers to provide a total adapter solution.

    Notably, they also offer several innovative features including the UHV valley tracking charge mode, adaptive OCP compensation, and adaptive green mode control among others that allow customers to design high quality power supplies faster and with fewer components using the simplest design approach.

    “When we launched our first GaN SiP last year, it was an important milestone in our company’s evolution. It demonstrated a new GTM strategy for the AC-to-DC power market,” said Wayne Lo, Vice President of Marketing, Weltrend. “Today’s news confirms we’re continuing to serve that space with a wider selection of devices designed to support a wider assortment of product power levels. A total packaged solution with Transphorm’s SuperGaN platform delivers design simplicity with unparalleled performance for devices now ranging from low 30-watt USB-C PD power adapters through to nearly 200-watt chargers, a unique Transphorm GaN capability.”

    End product manufacturers seek ways to develop new adapters with a reduced bill-of-materials (BOM) that offer versatility, fast charging, and higher power outputs. Additionally, in many cases they seek to deliver “one-size-fits-all” chargers with multiple ports and/or multiple types of connections. All of this in smaller, lighter weight form factor.

    Some key advantages of Transphorm’s normally-off d-mode SuperGaN platform include best-in-class robustness (+/- 20 V gate margin with a 4 V noise immunity) and reliability (< 0.05 FIT) with the ability to increase power density by 50% over silicon. Weltrend’s elegant SiP designs harness those advantages along with its own innovative technologies to create a near plug-and-play solution that speeds design while reducing form factor size.

    “SiPs are an important device option when considering the needs of adapter and charger manufacturers,” said Tushar Dhayagude, Vice President of Worldwide Sales and FAE, Transphorm. “These systems require effective power conversion that, while simple to use with integrated functionality, also minimize learning curves to ensure quick design in. The first device released validated the performance and versatility of a SuperGaN SiP. The new devices announced today validate both our companies’ deepening commitment to arming customers with choice.”

    Key Specifications
     
     WT7162RHUG24AWT7162RHUG24B (new)WT7162RHUG24C (new)
    Rds(on)240 mΩ150 mΩ480 mΩ
    Vds min650 V
    Power Efficiency> 93%
    Power Density26 w/in3
    Max Frequency180 kHz
    Wide Output
    Voltage Operation
    USB-C PD 3.0
    PPS 3.3V~21V
    Package24-pin 8×8 QFN
    Key Features
     
    FeatureAdvantage
    Adjustable GaN FET gate slew rate controlBalances out efficiency and EMI compliance
    External VDD linear regulator circuit not required
    (700 V ultra HV start-up current pulled directly from AC Line voltage)
    Reduces component count
    Reduced package inductanceMaximizes chip performance
    Fits in a standard 8×8 QFN FFAllows for low profile/small system footprint

    Original – Transphorm

    Comments Off on Transphorm and Weltrend Semiconductor Announced Availability of Two New GaN System-in-Packages
  • SiCrystal, a ROHM Group Company, and STMicroelectronics Expand a Multi-Year SiC Wafers Supply Agreement

    SiCrystal, a ROHM Group Company, and STMicroelectronics Expand a Multi-Year SiC Wafers Supply Agreement

    2 Min Read

    ROHM and STMicroelectronics announced the expansion of the existing multi-year, long-term 150mm silicon carbide (SiC) substrate wafers supply agreement with SiCrystal, a ROHM group company. The new multi-year agreement governs the supply of larger volumes of SiC substrate wafers manufactured in Nuremberg, Germany, for a minimum expected value of $230 million.

    Geoff West, EVP and Chief Procurement Officer, STMicroelectronics, commented “This expanded agreement with SiCrystal will bring additional volumes of 150mm SiC substrate wafers to support our devices manufacturing capacity ramp-up for automotive and industrial customers worldwide. It helps strengthen our supply chain resilience for future growth, with a balanced mix of in-house and commercial supply across regions”.

    “SiCrystal is a group company of ROHM, a leading company of SiC, and has been manufacturing SiC substrate wafers for many years. We are very pleased to extend this supply agreement with our longstanding customer ST. We will continue to support our partner to expand SiC business by ramping up 150mm SiC substrate wafer quantities continuously and by always providing reliable quality”.said Dr. Robert Eckstein, President and CEO of SiCrystal, a ROHM group company.

    Energy-efficient SiC power semiconductors enable electrification in the automotive and industrial sectors in a more sustainable way. By facilitating more efficient energy generation, distribution and storage, SiC supports the transition to cleaner mobility solutions, lower emissions industrial processes and a greener energy future, as well as more reliable power supplies for resource-intensive infrastructure like data centers dedicated to AI applications.

    Original – STMicroelectronics

    Comments Off on SiCrystal, a ROHM Group Company, and STMicroelectronics Expand a Multi-Year SiC Wafers Supply Agreement
  • Semilab and Fraunhofer IISB Establish a Joint Lab for (U)WBG Metrology

    Semilab and Fraunhofer IISB Establish a Joint Lab for (U)WBG Metrology

    1 Min Read

    Semilab Zrt. and Fraunhofer IISB announced the official kick-off of their strategic partnership.

    Within their new joint lab, located at the IISB in Erlangen, the partners develop state-of-the-art metrology and inspection solutions for (ultra-) wide-bandgap semiconductor materials.

    The goal is to take semiconductor metrology to a next level along the value chain, from base material to die. By bringing new features and tools from lab to market, new standards for SiC, GaN and other (U)WBG semiconductors will be set.

    Original – Fraunhofer IISB

    Comments Off on Semilab and Fraunhofer IISB Establish a Joint Lab for (U)WBG Metrology
  • Virtual Forest Adopts Navitas Semiconductor's GaNFast™ in a Solar-Powered Irrigation Pump

    Virtual Forest Adopts Navitas Semiconductor’s GaNFast™ in a Solar-Powered Irrigation Pump

    2 Min Read

    Navitas Semiconductor announced that Virtual Forest, one of India’s leading electronics design companies specializing in motor control and human interface technologies for consumer appliances, fluid movement and mobility, has adopted its GaNFast™ power integrated circuits (IC) technology for a zero-emission, powerful 3 hp (2,250W) solar-powered irrigation pump.

    For many farmers worldwide, irrigating remote crops requires powerful pumps to lift water from rivers and streams up to field-level, with the majority powered by polluting and noisy diesel generators or expensive, lossy long-distance electrical cables. The Virtual Forest solar pump with maximum power point tracking (MPPT) operates in conjunction with solar panel and energy storage to provide robust, energy-independent and pollution-free performance at the point of use.

    The 3 hp (2,250W) pump is remotely accessed via quad-band IoT with low power consumption. It can raise over 50 gallons-per-minute of water to a height of over 90 feet, enough to water 3 acres of farmland, and help to produce 10 tonnes of wheat. Further, the IoT enabled solar pump ensures optimal water usage through intelligent analytics, therefore minimizing ground water utilization.

    Navitas GaNSense™ half-bridge power ICs monolithically by integrating two GaN power FETs with GaN drivers, level-shifters, protection features and high-efficiency loss-less current sensing. High-efficiency NV6269 half-bridge ICs, in easy-to-use 8×10 mm QFN packages are used in a 3-phase motor inverter, with 3x-5x energy savings vs legacy silicon IGBTs.

    “The $450 million solar-pump market in India is expected to reach $1.5 Bn by 2026, calling for a solar revolution on Indian fields,” said Virtual Forest’s CEO, Omer Basith, adding “Reliable, off-grid systems are critical to overcome food insecurity and achieve energy efficiency. Leveraging Navitas’ high-power, efficient GaNSense™ half-bridge, we seek to deliver a robust solution to the market. We are nurturing our dream to drive gigatons of reduction in carbon emissions, thereby making the world a greener place to live in. Hence, our name — Virtual Forest.”

    “The design team at Virtual Forest adopted the GaNSense half-bridges very quickly, for a fast time-to-market,” said Alessandro Squeri, Navitas’ Senior Sales Director. “With GaNSense, ‘easy-to-use feature, Virtual Forest comes into the partnership with high efficiency, low component count and a robust design for tough environments.”

    Original – Navitas Semiconductor

    Comments Off on Virtual Forest Adopts Navitas Semiconductor’s GaNFast™ in a Solar-Powered Irrigation Pump
  • Infineon Technologies will Power FOXESS Energy Storage Systems and String Inverters

    Infineon Technologies will Power FOXESS Energy Storage Systems and String Inverters

    3 Min Read

    Infineon Technologies AG supplies its power semiconductor devices to FOXESS, a fast-growing leader in the green energy industry and a manufacturer of inverters and energy storage systems. The two sides aim at promoting the development of green energy.

    Infineon will provide FOXESS with its CoolSiC™ MOSFETs 1200 V, which will be used with EiceDRIVER™ gate drivers for industrial energy storage applications. At the same time, FOXESS’ string PV inverters will use Infineon’s IGBT7 H7 1200 V power semiconductor devices.

    The global market for photovoltaic energy storage systems (PV-ES) has grown at a high speed in the last years. As competition in the PV-ES market accelerates, improving power density has become key to success, and how to improve efficiency and power density for energy storage applications has attracted much attention. Infineon’s CoolSiC MOSFET 1200 V and IGBT7 H7 1200 V series power semiconductor devices adopt the latest semiconductor technologies and design concepts that are tailored to industrial applications.

    Mr. Yu Daihui, Senior Vice President and Head of Industrial & Infrastructure of Infineon Technologies Greater China said, “As an industry leader in power semiconductors, we are proud to work closely with FOXESS. We will continue to drive decarbonization by enabling higher power density and more reliable systems for PV-ES applications.”

    Mr. Zhu Jingcheng, Chairman of FOXESS, said, “Thanks to the support of Infineon’s advanced components, FOXESS’ products have been significantly improved in terms of reliability and efficiency. This has been an important driving force for FOXESS’ growth. Infineon’s technical support and product quality have not only strengthened our competitiveness, but also expanded our presence in the market. We are confident about the future and look forward to further cooperation with Infineon to jointly promote the development of the industry and create greater value for our customers.”

    With a high power density, Infineon’s CoolSiC MOSFETs 1200 V can reduce losses by 50 percent and provide ~2 percent additional energy without increasing the battery size, which is especially beneficial for high-performance, lightweight, and compact energy storage solutions. FOXESS’ H3PRO 15 kW-30 kW energy storage series uses Infineon’s CoolSiC MOSFETs 1200 V for all models. Thanks to Infineon’s excellent performance, the H3PRO series has achieved an efficiency of up to 98.1 percent and excellent EMC performance; with superior performance and reliability, the H3PRO series has seen rapid sales growth in the global market.

    Infineon’s TRENCHSTOP IGBT7 H7 650 V / 1200 V series has lower losses and helps improve the overall efficiency and power density of inverters. In high-power inverter projects, high-current mold packaged discrete devices with current handling capability above 100 A can reduce the number of IGBTs in parallel and replace the IGBT module solution, further improving system reliability and reducing costs; in addition, the H7 series has become an industry benchmark for its high-quality performance and greater resistance to humidity.

    At present, FOXESS’ main industrial and commercial model, the R Series 75-110 kW, redefines the overall design of the 100 kW model by using IGBT7 H7 series discretes, and the efficiency of the whole machine can reach up to 98.6 percent. Thanks to the low power loss and high power density of the IGBT7 H7 series in discrete packages, technical problems such as current sharing in the paralleling process can be simplified and optimized.

    Every power device needs a driver, and the right driver can make the design a lot easier. Infineon offers more than 500 EiceDRIVER gate drivers with typical output currents of 0.1 A~18 A and comprehensive protection functions including fast short-circuit protection (DESAT), active Miller clamp, shoot-through protection, fault reporting, shutdown, and overcurrent protection, suitable for all power devices including CoolSiC and IGBTs.

    Original – Infineon Technologies

    Comments Off on Infineon Technologies will Power FOXESS Energy Storage Systems and String Inverters
  • Axcelis Technologies Ships Another Batch of Purion Power Series™ Ion Implanters

    Axcelis Technologies Ships Another Batch of Purion Power Series™ Ion Implanters

    1 Min Read

    Axcelis Technologies, Inc. arranged multiple shipments of the Purion Power Series™ ion implanter systems to leading silicon carbide (SiC) power device chipmakers worldwide. The shipments, all shipped in the first quarter, included the Purion H200™ SiC high current, the Purion XE™ SiC high energy and the Purion M™ SiC medium current implanters.

    The 150mm and 200mm systems will be used in high volume production of power devices supporting automotive, industrial, energy, and other power intensive applications. 

    President and CEO Russell Low commented, “We continue to win new customers and expand our footprint at existing customers globally. The Purion Power Series is the market leader due to its highly differentiated features and process control capabilities that are enabling for power device applications. Axcelis is the only ion implant company that can deliver complete recipe coverage for all power device applications.”

    Original – Axcelis Technologies

    Comments Off on Axcelis Technologies Ships Another Batch of Purion Power Series™ Ion Implanters
  • Chicony Power Technology Honors Infineon Technologies as its 2023 “GaN Strategic Partner of the Year”

    Chicony Power Technology Honors Infineon Technologies as its 2023 “GaN Strategic Partner of the Year”

    2 Min Read

    Chicony Power Technology, a worldwide leading manufacturer of power supplies and a pioneer in power electronics, has announced the winners of its Annual Partner Awards, honoring Infineon Technologies AG as its 2023 “GaN Strategic Partner of the Year”.

    Infineon has been recognized by Chicony Power as its top partner for gallium nitride (GaN)-based power supplies, including notebook adapters, as well as ICT applications in gaming, storage and servers. This acknowledgment is the result of Infineon’s high standards for product selection, application expertise, high reliability and cost-effectiveness. 

    GaN stands out as one of the most crucial technologies which are essential for improving the efficiency of power supplies and reducing their product size. Pooling Infineon’s leading GaN expertise and Chicony Power’s remarkable capabilities in power supply system design, the win-win collaboration has helped push the boundaries of innovation and further strengthened both companies’ leading positions in energy-efficient power solutions. As of today, the GaN adoption rate in Chicony Power’s high-watt adapters has reached 20 percent, and this rate is rapidly increasing.

    “Unrivalled R&D resources, a comprehensive application understanding and a large number of customer projects let Infineon continuously drive its roadmap for becoming a leading GaN Powerhouse,” said Adam White, Division President Power & Sensor Systems at Infineon Technologies. “The Strategic Partner of the Year award from Chicony Power is a great honor for us. We see this as part of our common mission to drive decarbonization and digitalization together.”

    “We’re pleased to honor Infineon, which has played a pivotal role in driving customer success throughout 2023, as our GaN Strategic Partner of the Year,” said Peter Tseng, President of Chicony Power Technology. “Our Vision is to be a global pioneer in the implementation of new technology that enhances power supply efficiency, reduces the carbon footprint of power supplies and helps create a greener world. We would like our Annual Partner Awards to encourage Infineon and all other partners to maintain the momentum in jointly promoting GaN technology in the market alongside Chicony Power, making the power industry greener and cleaner.” 

    Original – Infineon Technologies

    Comments Off on Chicony Power Technology Honors Infineon Technologies as its 2023 “GaN Strategic Partner of the Year”
  • Coherent Secured $15 million Funding Supported by CHIPS and Science Act

    Coherent Secured $15 million Funding Supported by CHIPS and Science Act

    2 Min Read

    Coherent Corp. announced that it secured $15 million in funding from the Creating Helpful Incentives to Produce Semiconductors (CHIPS) and Science Act of 2022 that provided the Department of Defense (DoD) with $2 billion to strengthen and revitalize the U.S. semiconductor supply chain.

    One of the key objectives of the CHIPS program is to nurture ecosystems that reduce risk, incentivizing large-scale private investment in production, breakthrough technologies, and workers. To that end, the DoD, through the Naval Surface Warfare Center Crane Division and the National Security Technology Accelerator, established eight Microelectronics Commons regional innovation hubs in September, including the Commercial Leap Ahead for Wide-Bandgap Semiconductors (CLAWS) Hub based in North Carolina and led by NC State University.

    As a member of the CLAWS Hub, Coherent will receive $15 million to accelerate the commercialization of next-generation wide- and ultrawide-bandgap semiconductors, namely, silicon carbide and single-crystal diamond, respectively.

    “We are excited to be recipients of funding from the CHIPS Act, delighted to be part of the CLAWS Hub, and proud to help the U.S. establish a strategic, long-term leadership position in these critical next-generation semiconductor technologies,” said Sohail Khan, Executive Vice President, Wide-Bandgap Electronics.

    “Wide- and ultrawide-bandgap semiconductors enable the electrification of transportation, including road vehicles, high-speed trains, and mobile industrial machinery. They also enable smart power grids to efficiently respond to fluctuations in energy demands by regulating the delivery of electricity from conventional and renewable sources to distribution networks, as well as to and from utility-scale power storage and microgrids.”

    In addition to DoD requirements for high-voltage, high-power applications and systems including hybrid electric vehicles (HEVs), more electric aircraft (MEA) components, directed energy, Navy vessel power systems, and all-electric ships, silicon carbide power electronics are increasingly recognized for their potential to greatly improve the energy efficiency of artificial intelligence (AI) data centers and traditional hyperscale data centers, where power consumption is growing rapidly due to the exploding demand for data- and compute-intensive workloads from AI, cryptocurrency mining, and blockchain applications.

    Single-crystal diamond promises to exceed the performance of silicon carbide and greatly expand the applications universe with quantum computing, quantum encryption, and quantum sensing.

    Original – Coherent

    Comments Off on Coherent Secured $15 million Funding Supported by CHIPS and Science Act