-
LATEST NEWS / PROJECTS / SiC / WBG2 Min Read
The U of A celebrated a milestone with the topping-out of the Multi-User Silicon Carbide Research and Fabrication Facility.
More than 100 students, faculty, state leaders and citizens were on hand to sign the steel topping-out beam and hear remarks from Kim Needy, dean of the College of Engineering, and Alan Mantooth, Distinguished Professor of electrical engineering.
The new semiconductor research and fabrication facility will produce microelectronic chips made with silicon carbide, a powerful semiconductor that outperforms basic silicon in several critical ways. The facility will enable the federal government – via national laboratories – businesses of all sizes and other universities to prototype with silicon carbide, a capability that does not presently exist elsewhere in the United States.
Work at the research and fabrication facility will bridge the gap between traditional university research and the needs of private industry and will accelerate technological advancement by providing a single location where chips can go from developmental research to prototyping, testing and fabrication.
The 21,760-square-foot facility, located next to the National Center for Reliable Electrical Power Transmission at the Arkansas Research and Technology Park, will address obstacles to U.S. competitiveness in the development of silicon-carbide electronics used in a wide range of electronic devices, circuits and other consumer applications. The building will feature approximately 8,000 square feet of clean rooms for fabrication and testing.
Education and training within the facility will also accelerate workforce development, helping supply the next generation of engineers and technicians in semiconductor manufacturing.
Original – University of Arkansas
-
GaN / LATEST NEWS / WBG3 Min Read
Transphorm, Inc. and the global leader in adapter USB Power Delivery (PD) Controller Integrated Circuits (IC) Weltrend Semiconductor Inc. announced availability of two new GaN System-in-Packages (SiPs). When combined with Weltrend’s flagship GaN SiP announced last year, the new devices establish the first SiP product family based on Transphorm’s SuperGaN® platform.
The new SiPs—WT7162RHUG24B and WT7162RHUG24C—integrate Weltrend’s high frequency multi-mode (QR/Valley Switching) Flyback PWM controller with Transphorm’s 150 mΩ and 480 mΩ SuperGaN FETs respectively. Like their 240 mΩ predecessor (WT7162RHUG24A), the devices pair with USB PD or programmable power adapter controllers to provide a total adapter solution.
Notably, they also offer several innovative features including the UHV valley tracking charge mode, adaptive OCP compensation, and adaptive green mode control among others that allow customers to design high quality power supplies faster and with fewer components using the simplest design approach.
“When we launched our first GaN SiP last year, it was an important milestone in our company’s evolution. It demonstrated a new GTM strategy for the AC-to-DC power market,” said Wayne Lo, Vice President of Marketing, Weltrend. “Today’s news confirms we’re continuing to serve that space with a wider selection of devices designed to support a wider assortment of product power levels. A total packaged solution with Transphorm’s SuperGaN platform delivers design simplicity with unparalleled performance for devices now ranging from low 30-watt USB-C PD power adapters through to nearly 200-watt chargers, a unique Transphorm GaN capability.”
End product manufacturers seek ways to develop new adapters with a reduced bill-of-materials (BOM) that offer versatility, fast charging, and higher power outputs. Additionally, in many cases they seek to deliver “one-size-fits-all” chargers with multiple ports and/or multiple types of connections. All of this in smaller, lighter weight form factor.
Some key advantages of Transphorm’s normally-off d-mode SuperGaN platform include best-in-class robustness (+/- 20 V gate margin with a 4 V noise immunity) and reliability (< 0.05 FIT) with the ability to increase power density by 50% over silicon. Weltrend’s elegant SiP designs harness those advantages along with its own innovative technologies to create a near plug-and-play solution that speeds design while reducing form factor size.
“SiPs are an important device option when considering the needs of adapter and charger manufacturers,” said Tushar Dhayagude, Vice President of Worldwide Sales and FAE, Transphorm. “These systems require effective power conversion that, while simple to use with integrated functionality, also minimize learning curves to ensure quick design in. The first device released validated the performance and versatility of a SuperGaN SiP. The new devices announced today validate both our companies’ deepening commitment to arming customers with choice.”
Key Specifications WT7162RHUG24A WT7162RHUG24B (new) WT7162RHUG24C (new) Rds(on) 240 mΩ 150 mΩ 480 mΩ Vds min 650 V Power Efficiency > 93% Power Density 26 w/in3 Max Frequency 180 kHz Wide Output
Voltage OperationUSB-C PD 3.0
PPS 3.3V~21VPackage 24-pin 8×8 QFN Key Features Feature Advantage Adjustable GaN FET gate slew rate control Balances out efficiency and EMI compliance External VDD linear regulator circuit not required
(700 V ultra HV start-up current pulled directly from AC Line voltage)Reduces component count Reduced package inductance Maximizes chip performance Fits in a standard 8×8 QFN FF Allows for low profile/small system footprint Original – Transphorm
-
GaN / LATEST NEWS / WBG2 Min Read
Navitas Semiconductor announced that Virtual Forest, one of India’s leading electronics design companies specializing in motor control and human interface technologies for consumer appliances, fluid movement and mobility, has adopted its GaNFast™ power integrated circuits (IC) technology for a zero-emission, powerful 3 hp (2,250W) solar-powered irrigation pump.
For many farmers worldwide, irrigating remote crops requires powerful pumps to lift water from rivers and streams up to field-level, with the majority powered by polluting and noisy diesel generators or expensive, lossy long-distance electrical cables. The Virtual Forest solar pump with maximum power point tracking (MPPT) operates in conjunction with solar panel and energy storage to provide robust, energy-independent and pollution-free performance at the point of use.
The 3 hp (2,250W) pump is remotely accessed via quad-band IoT with low power consumption. It can raise over 50 gallons-per-minute of water to a height of over 90 feet, enough to water 3 acres of farmland, and help to produce 10 tonnes of wheat. Further, the IoT enabled solar pump ensures optimal water usage through intelligent analytics, therefore minimizing ground water utilization.
Navitas GaNSense™ half-bridge power ICs monolithically by integrating two GaN power FETs with GaN drivers, level-shifters, protection features and high-efficiency loss-less current sensing. High-efficiency NV6269 half-bridge ICs, in easy-to-use 8×10 mm QFN packages are used in a 3-phase motor inverter, with 3x-5x energy savings vs legacy silicon IGBTs.
“The $450 million solar-pump market in India is expected to reach $1.5 Bn by 2026, calling for a solar revolution on Indian fields,” said Virtual Forest’s CEO, Omer Basith, adding “Reliable, off-grid systems are critical to overcome food insecurity and achieve energy efficiency. Leveraging Navitas’ high-power, efficient GaNSense™ half-bridge, we seek to deliver a robust solution to the market. We are nurturing our dream to drive gigatons of reduction in carbon emissions, thereby making the world a greener place to live in. Hence, our name — Virtual Forest.”
“The design team at Virtual Forest adopted the GaNSense half-bridges very quickly, for a fast time-to-market,” said Alessandro Squeri, Navitas’ Senior Sales Director. “With GaNSense, ‘easy-to-use feature, Virtual Forest comes into the partnership with high efficiency, low component count and a robust design for tough environments.”
Original – Navitas Semiconductor
-
LATEST NEWS / SiC / WBG1 Min Read
Axcelis Technologies, Inc. arranged multiple shipments of the Purion Power Series™ ion implanter systems to leading silicon carbide (SiC) power device chipmakers worldwide. The shipments, all shipped in the first quarter, included the Purion H200™ SiC high current, the Purion XE™ SiC high energy and the Purion M™ SiC medium current implanters.
The 150mm and 200mm systems will be used in high volume production of power devices supporting automotive, industrial, energy, and other power intensive applications.
President and CEO Russell Low commented, “We continue to win new customers and expand our footprint at existing customers globally. The Purion Power Series is the market leader due to its highly differentiated features and process control capabilities that are enabling for power device applications. Axcelis is the only ion implant company that can deliver complete recipe coverage for all power device applications.”
Original – Axcelis Technologies
-
GaN / LATEST NEWS / WBG2 Min Read
Chicony Power Technology, a worldwide leading manufacturer of power supplies and a pioneer in power electronics, has announced the winners of its Annual Partner Awards, honoring Infineon Technologies AG as its 2023 “GaN Strategic Partner of the Year”.
Infineon has been recognized by Chicony Power as its top partner for gallium nitride (GaN)-based power supplies, including notebook adapters, as well as ICT applications in gaming, storage and servers. This acknowledgment is the result of Infineon’s high standards for product selection, application expertise, high reliability and cost-effectiveness.
GaN stands out as one of the most crucial technologies which are essential for improving the efficiency of power supplies and reducing their product size. Pooling Infineon’s leading GaN expertise and Chicony Power’s remarkable capabilities in power supply system design, the win-win collaboration has helped push the boundaries of innovation and further strengthened both companies’ leading positions in energy-efficient power solutions. As of today, the GaN adoption rate in Chicony Power’s high-watt adapters has reached 20 percent, and this rate is rapidly increasing.
“Unrivalled R&D resources, a comprehensive application understanding and a large number of customer projects let Infineon continuously drive its roadmap for becoming a leading GaN Powerhouse,” said Adam White, Division President Power & Sensor Systems at Infineon Technologies. “The Strategic Partner of the Year award from Chicony Power is a great honor for us. We see this as part of our common mission to drive decarbonization and digitalization together.”
“We’re pleased to honor Infineon, which has played a pivotal role in driving customer success throughout 2023, as our GaN Strategic Partner of the Year,” said Peter Tseng, President of Chicony Power Technology. “Our Vision is to be a global pioneer in the implementation of new technology that enhances power supply efficiency, reduces the carbon footprint of power supplies and helps create a greener world. We would like our Annual Partner Awards to encourage Infineon and all other partners to maintain the momentum in jointly promoting GaN technology in the market alongside Chicony Power, making the power industry greener and cleaner.”
Original – Infineon Technologies
-
LATEST NEWS / PROJECTS / WBG2 Min Read
Coherent Corp. announced that it secured $15 million in funding from the Creating Helpful Incentives to Produce Semiconductors (CHIPS) and Science Act of 2022 that provided the Department of Defense (DoD) with $2 billion to strengthen and revitalize the U.S. semiconductor supply chain.
One of the key objectives of the CHIPS program is to nurture ecosystems that reduce risk, incentivizing large-scale private investment in production, breakthrough technologies, and workers. To that end, the DoD, through the Naval Surface Warfare Center Crane Division and the National Security Technology Accelerator, established eight Microelectronics Commons regional innovation hubs in September, including the Commercial Leap Ahead for Wide-Bandgap Semiconductors (CLAWS) Hub based in North Carolina and led by NC State University.
As a member of the CLAWS Hub, Coherent will receive $15 million to accelerate the commercialization of next-generation wide- and ultrawide-bandgap semiconductors, namely, silicon carbide and single-crystal diamond, respectively.
“We are excited to be recipients of funding from the CHIPS Act, delighted to be part of the CLAWS Hub, and proud to help the U.S. establish a strategic, long-term leadership position in these critical next-generation semiconductor technologies,” said Sohail Khan, Executive Vice President, Wide-Bandgap Electronics.
“Wide- and ultrawide-bandgap semiconductors enable the electrification of transportation, including road vehicles, high-speed trains, and mobile industrial machinery. They also enable smart power grids to efficiently respond to fluctuations in energy demands by regulating the delivery of electricity from conventional and renewable sources to distribution networks, as well as to and from utility-scale power storage and microgrids.”
In addition to DoD requirements for high-voltage, high-power applications and systems including hybrid electric vehicles (HEVs), more electric aircraft (MEA) components, directed energy, Navy vessel power systems, and all-electric ships, silicon carbide power electronics are increasingly recognized for their potential to greatly improve the energy efficiency of artificial intelligence (AI) data centers and traditional hyperscale data centers, where power consumption is growing rapidly due to the exploding demand for data- and compute-intensive workloads from AI, cryptocurrency mining, and blockchain applications.
Single-crystal diamond promises to exceed the performance of silicon carbide and greatly expand the applications universe with quantum computing, quantum encryption, and quantum sensing.
Original – Coherent