• Navitas Semiconductor and SHINRY Collaborate to Accelerate Development of New-Energy Vehicle Power Systems

    Navitas Semiconductor and SHINRY Collaborate to Accelerate Development of New-Energy Vehicle Power Systems

    3 Min Read

    Navitas Semiconductor and SHINRY, global industry leader of on-board power supply and strategic supplier to Honda, Hyundai, BYD, Geely, XPENG, BAIC and many more leading automobile manufacturers, announced the opening of an advanced, joint R&D power laboratory to accelerate the development of New-Energy Vehicle (NEV) power systems enabled by Navitas’ GaNFast™ technology.

    Next-gen gallium nitride (GaN) is replacing legacy silicon power chips due to superior high-frequency and high-efficiency characteristics. GaN delivers faster charging, faster acceleration and longer-range, accelerating market adoption of NEVs and the transition from fossil fuels to clean, renewable energy.

    On January 16th, 2024, Peter (Jingjun) Chen, COO of SHINRY, along with Navitas’ Gene Sheridan, CEO and Navitas’ Charles (Yingjie) Zha, VP and GM plus other senior executives attended the joint lab’s opening ceremony at SHINRY headquarters in Shenzhen.

    The joint lab accelerates development projects, with leading-edge GaN technology combining with innovative system-design skills and engineering talent to enable unprecedented high power density, lightweight, efficient designs that translate to faster charging and extended range, with faster time-to-market.

    The joint lab brings together experienced, highly-professional engineers from Navitas and SHINRY to build efficient, collaborative R&D platforms. Navitas’ own dedicated EV system Design Center, located in Shanghai will provide comprehensive technical support for the joint lab.

    Navitas will not only supply SHINRY with leading-edge, trusted power devices, but will also engage in system-level R&D from the initial stages of product specification and design, through to test platforms and customized packaging solutions. The result will be more efficient, higher power density, more reliable, and cost-effective power systems for NEVs.

    “SHINRY always pursues technological innovation. As early as 2012, SHINRY began applying Silicon Carbide (SiC) MOS, and in 2019, SHINRY initiated research on the application of GaN and has been actively seeking strategic partners.” said Peter (Jingjun) Chen, COO of SHINRY.

    “As an advanced supplier in the field, Navitas will assist in creating more advanced, energy-efficient, and higher-efficiency power system products. I believe the establishment of this joint lab will comprehensively accelerate the design and market launch of SHINRY’s products and further enhance the market competitiveness of SHINRY products.”

    “We are excited to join with SHINRY to establish a new lab for next-gen power semiconductors, assisting SHINRY in creating advanced power systems.” said Gene Sheridan, Navitas’ co-founder & CEO. “SHINRY’s mission to change the way of travel aligns closely with Navitas’ Electrify Our World™ mission. We believe that through our joint efforts, leading GaN technologies will enter the power systems of NEVs for more end-users, contributing to the vigorous growth of the new energy industry.

    Original – Navitas Semiconductor

    Comments Off on Navitas Semiconductor and SHINRY Collaborate to Accelerate Development of New-Energy Vehicle Power Systems
  • Infineon's GaN Systems Recognized as the “Graduate Of The Year”

    Infineon’s GaN Systems Recognized as the “Graduate Of The Year”

    2 Min Read

    Acquired by Infineon Technologies in October 2023, GaN Systems has been recognized as the “Graduate Of The Year” by The Global Cleantech 100. The announcement was made at Cleantech Forum North America in San Francisco.

    The award recognizes the exceptional contribution legacy GaN Systems has made to sustainable innovation and their successful management team as rated by the financial investors on the 80-member Cleantech Group Expert Panel. This 2024 award rounds out several years of recognition in GaN Systems’ sustainability journey which includes entry in to the Global Cleantech 100 Hall of Fame (1 of only 14 companies ever) and the 2023 Global Cleantech 100 winner (1 of only 100 companies globally in 2023).

    The acquisition of GaN Systems has significantly accelerated Infineon’s gallium nitride (GaN) roadmap and further strengthens its leadership in power systems by offering a broad product portfolio combined with leading edge application know-how in the development of GaN-based solutions. Infineon’s expertise and in-depth knowledge in GaN paves the way for more energy-efficient and CO 2-saving technology solutions that support decarbonization.

    “My congratulations go out to all legacy GaN Systems employees for this recognition and winning multiple Cleantech awards. We are glad to have these smart and curious minds on board at Infineon,” said Adam White, Division President at Power & Sensor Systems at Infineon. “Thanks to unrivalled R&D resources, a comprehensive understanding of applications and a large number of customer projects, Infineon now leverages the full potential of GaN Systems to become a leading GaN Powerhouse fostering the transformation towards green energy.”

    Cleantech® Group is a leading global authority on global cleantech innovation. The Global Cleantech 100 program has been running since 2009. This highly anticipated annual report publishes a list of companies with the most promising ideas in cleantech.

    Original – Infineon Technologies

    Comments Off on Infineon’s GaN Systems Recognized as the “Graduate Of The Year”
  • Infineon Technologies and Anker Innovations Announced Joint Innovation Application Center

    Infineon Technologies and Anker Innovations Announced Joint Innovation Application Center

    2 Min Read

    Infineon Technologies AG announced its joint Innovation Application Center in Shenzhen with Anker Innovations, a global leader in charging technology. With the center already fully operating, it is paving the way for more energy-efficient and CO2-saving charging solutions that support decarbonization.

    Driven by the growing consumer demand for faster charging solutions due to an increasing usage of mobile devices, laptops and other battery-powered devices, the idea of establishing an Anker-Infineon Innovation Application Center dated back to 2021. After two years of preparation, the joint lab now serves as R&D hub for industry experts to develop power-delivery (PD) fast charging solutions with higher power density, mainly based on Infineon’s next-generation Hybrid Flyback (HFB) controller product family and the CoolGaN™ IPS for fast chargers above 100W.

    Anker has already brought several successful products to the market, such as the industry-leading 100W+ fast charger device powered by Infineon’s CoolGaN in 2022. With the Innovation Application Center Anker and Infineon will even shorten the application cycle and accelerate the time to market for future products. 

    “Anker is an important customer for Infineon,” said Christian Burrer, Vice President of Systems & Application Marketing of Power & Sensor Systems Division at Infineon Technologies. “We have already started a strong cooperation in the charging field, with product and system solutions covering several Infineon product lines. In the field of PD charging, we provide our customers a comprehensive product portfolio, including state-of-the-art power controllers, first-class switching power supplies, leading silicon MOSFET and GaN transistor performance, and more.”

    Beyond charging solutions, the joint lab is focusing on a more diversified range of consumer applications, driven by Infineon’s expertise in wide-bandgap materials such as gallium nitride (GaN). The acquisition of GaN Systems in 2023 has significantly accelerated Infineon’s GaN roadmap and further strengthens its leadership in power systems through mastery of all relevant power semiconductor technologies.

    “In 2023, Anker achieved success in many markets such as China and Europe. This would not have been possible without Infineon’s GaN technology solutions and the strong collaboration between our companies. We look forward to even intensifying our partnership with Infineon”, said by Kang Xiong, General Manager of the charging business unit at Anker Technologies.

    Original – Infineon Technologies

    Comments Off on Infineon Technologies and Anker Innovations Announced Joint Innovation Application Center
  • Qorvo Unveiled Automotive-Qualified SiC FET in a Compact D2PAK-7L Package

    Qorvo Unveiled Automotive-Qualified SiC FET in a Compact D2PAK-7L Package

    2 Min Read

    Qorvo® unveiled an automotive-qualified silicon carbide (SiC) field effect transistor (FET) offering an industry-best 9mΩ RDS(on) in a compact D2PAK-7L package. This 750V SiC FET is the first in a new family of pin-compatible SiC FETs from Qorvo with RDS(on) options up to 60mΩ, making them well suited for electric vehicle (EV) applications, including on-board chargers, DC/DC converters and positive temperature coefficient (PTC) heater modules.

    The UJ4SC075009B7S features a 9mΩ typical RDS(on) at 25°C needed for reducing conduction losses and maximizing efficiency in high voltage, multi-kilowatt automotive applications. Its small, surface-mount package enables automated assembly flows and reduces customer manufacturing costs. This new 750V family complements Qorvo’s existing 1200V and 1700V automotive SiC FETs in D2PAK packaging to form a complete portfolio addressing EV applications that span 400V and 800V battery architectures.

    Ramanan Natarajan, director of Product Line Marketing for Qorvo’s Power Products, said, “The launch of this new family of SiC FETs demonstrates our commitment to providing EV powertrain designers the most advanced and efficient solutions for their unique automotive power challenges.”

    These fourth generation SiC FETs leverage Qorvo’s unique cascode circuit configuration, in which a SiC JFET is co-packaged with a Si MOSFET to produce a device with the efficiency advantages of wide bandgap switch technology and the simpler gate drive of silicon MOSFETs. Efficiency in SiC FETs is dependent on conduction losses, and Qorvo’s cascode/JFET approach enables reduced conduction losses through industry-best RDS(on) and body diode reverse voltage drop.

    The key features of the UJ4SC075009B7S include:

    • Threshold voltage VG(th): 4.5V (typical) allowing 0 to 15V drive
    • Low body diode VFSD: 1.1V
    • Maximum operating temperature: 175°C
    • Excellent reverse recovery: Qrr = 338 nC
    • Low gate charge: QG = 75 nC
    • Automotive Electronics Council (AEC) Q101-qualified

    Original – Qorvo

    Comments Off on Qorvo Unveiled Automotive-Qualified SiC FET in a Compact D2PAK-7L Package
  • Mitsubishi Electric Announced Release of Six New J3-Series Power Semiconductor Modules

    Mitsubishi Electric Announced Release of Six New J3-Series Power Semiconductor Modules

    2 Min Read

    Mitsubishi Electric Corporation announced the coming release of six new J3-Series power semiconductor modules for various electric vehicles (xEVs), featuring either a silicon carbide metal-oxide semiconductor field-effect transistor (SiC-MOSFET) or a RC-IGBT (Si), with compact designs and scalability for use in the inverters of electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs). All six J3-Series products will be available for sample shipments from March 25.

    The new power modules will be exhibited at the 38th Electronics R&D, Manufacturing and Packaging Technology Expo (NEPCON JAPAN 2024) from January 24 to 26 at Tokyo Big Sight, Japan, as well as other exhibitions in North America, Europe, China and additional locations.

    As power semiconductors capable of efficiently converting electricity expand and diversify in response to decarbonization initiatives, the demand is increasing for SiC power semiconductors offering significantly reduced power loss. In the xEV sector, power semiconductor modules are used widely in power conversion devices such as inverters for xEV drive motors.

    In addition to extending the cruising range of xEVs, compact, high-power, high-efficiency modules are needed to further downsize batteries and inverters. But due to the high safety standards set for xEVs, power semiconductors used in drive motors must be more reliable than those used in general industrial applications.

    Development of these SiC products was partially supported by Japan’s New Energy and Industrial Technology Development Organization (NEDO).

    Original – Mitsubishi Electric

    Comments Off on Mitsubishi Electric Announced Release of Six New J3-Series Power Semiconductor Modules
  • Infineon Expands and Extends the Existing SiC Wafer Supply Agreement with Wolfspeed

    Infineon Expands and Extends the Existing SiC Wafer Supply Agreement with Wolfspeed

    2 Min Read

    Infineon Technologies AG and Wolfspeed, Inc. announced the expansion and extension of their existing long-term 150mm silicon carbide wafer supply agreement, originally signed in February 2018. The extended partnership includes a multi-year capacity reservation agreement.

    It contributes to Infineon’s general supply chain stability, also with regard to the growing demand for silicon carbide semiconductor products for automotive, solar and EV applications and energy storage systems. 

    “As the demand for silicon carbide devices continues to increase, we are following a multi-source strategy to secure access to a high-quality, global and long-term supply base of 150mm and 200mm SiC wafers. Our prolonged partnership with Wolfspeed further strengthens Infineon’s supply chain resilience for the coming years,” said Jochen Hanebeck, CEO of Infineon Technologies. “We have been working with Wolfspeed for more than 20 years to bring the promise of silicon carbide to the automotive, industrial and energy markets, and to help customers leverage this energy-efficient technology to foster decarbonization.”

    The adoption of silicon carbide-based power solutions is rapidly growing across multiple markets. Silicon carbide solutions enable smaller, lighter and more cost-effective designs, converting energy more efficiently to unlock new clean energy applications. To better support these growing markets, Infineon is continuously diversifying its supplier base to secure access to high-quality silicon carbide substrates.

    “Wolfspeed is the world’s leader in silicon carbide production. We are the catalyst in the industry transition to silicon carbide, providing high-quality materials to key customers like Infineon, a leading supplier in both the automotive and industrial markets, while also scaling our capacity footprint,” said Wolfspeed president and CEO Gregg Lowe. “Industry estimates indicate demand for silicon carbide devices, as well as the supporting material, will grow substantially through 2030, representing a $20 billion annual opportunity. We are very pleased to continue our partnership with Infineon and to serve as a major supplier of silicon carbide wafers in the years ahead.”

    Original – Infineon Technologies

    Comments Off on Infineon Expands and Extends the Existing SiC Wafer Supply Agreement with Wolfspeed
  • Transphorm Adds Two New SuperGaN Devices in a 4-lead TO-247 Package

    Transphorm Adds Two New SuperGaN Devices in a 4-lead TO-247 Package

    2 Min Read

    Transphorm, Inc. announced availability of two new SuperGaN® devices in a 4-lead TO-247 package (TO-247-4L). The new TP65H035G4YS and TP65H050G4YS FETs offer a 35 mOhm and 50 mOhm on resistance respectively, complete with a kelvin-source terminal that gives customers versatile switching capabilities with even lower energy losses.

    The new products will run on Transphorm’s well-established GaN-on-Silicon substrate manufacturing process that is cost-effective, reliable, and well-suited for high volume manufacturing on silicon production lines. The 50 mOhm TP65H050G4YS FET is currently available while the 35mOhm TP65H035G4YS FET is sampling and slated for release in calendar Q1’2024.

    Transphorm’s 4-lead SuperGaN devices can serve as an original design-in option or as a drop-in replacement for 4-lead silicon and SiC solutions supporting power supplies at 1 kilowatt and up in a wide range of data center, renewables, and broad industrial applications. As noted, the 4-lead configuration offers flexibility to users for further improved switching performance.

    In a hard-switched synchronous boost converter, the 35 mOhm SuperGaN 4-lead FET reduced losses by 15 percent at 50 kilohertz (kHz) and by 27 percent at 100 kHz when compared to a SiC MOSFET device with a comparable on resistance.

    Transphorm’s SuperGaN FETs are known for delivering differentiating advantages such as:

    • Industry-leading robustness with a +/- 20 V gate threshold and a 4 V noise immunity.
    • Easier designability by reducing the amount of circuitry required around the device.
    • Easier drivability as FETs can pair with well-known, off-the shelf drivers common to silicon devices.

    The TO-247-4L devices offer the same robustness, designability, and drivability with the following core specifications:

    Part NumberVds (V) minRds(on) (mΩ) typVth (V) typId (25°C) (A) maxPackage Variation
    TP65H035G4YS650353.646.5Source
    TP65H050G4YS65050435Source

    “We continue to expand our product portfolio to bring to market GaN FETs that help customers leverage our SuperGaN platform performance advantages in whatever design requirement they may have,” said Philip Zuk, Senior Vice President, Business Development and Marketing, Transphorm.

    “The four-lead TO-247 package provides flexibility for designers and customers seeking even greater power system loss reductions with little to no design modifications on silicon or silicon carbide systems. It’s an important addition to our product line as we ramp into higher power applications.”

    Original – Transphorm

    Comments Off on Transphorm Adds Two New SuperGaN Devices in a 4-lead TO-247 Package
  • SemiQ to Show Its Latest SiC Portfolio at the APEC in California

    SemiQ to Show Its Latest SiC Portfolio at the APEC in California

    2 Min Read

    SemiQ will be exhibiting its latest portfolio of advanced silicon carbide (SiC) modules at the Applied Power Electronics Conference (APEC) in Long Beach, CA February 25-29, 2024.

    Visitors to SemiQ’s booth #2245 will have the first opportunity to explore the latest QSiC™ 1200V SiC modules. These modules are designed to operate reliably in challenging conditions and enable high-performance, high-density implementation while minimizing both dynamic and static losses. Crafted from high-performance ceramics, the modules are available in SOT-227, half-bridge and full-bridge options.  

    The new QSiC MOSFET modules support a variety of innovative automotive and industrial power applications where efficiency, power density and performance are critical design criteria. These include EV charging, on-board chargers (OBCs), DC-DC converters, E-compressors, fuel cell converters, medical power supplies, energy storage systems, solar and wind energy systems, data center power supplies and UPS/PFC circuits.

    “We’re excited to showcase our new family of QSiC™ 1200V MOSFET modules at APEC and look forward to empowering engineers across the renewable energy, automotive, medical, and industrial sectors to build robust systems,” said Dr. Timothy Han, President at SemiQ.

    “This family is a testament to SemiQ’s dedication to excellence in semiconductor technology. Our power modules stand out not just for their high performance, but also for the rigorous testing that ensures reliability. All modules have undergone testing exceeding 1350V. From gate burn-in testing to stress tests like HTRB and H3TRB, we prioritize stability and quality.”

    Held annually, APEC is a three-day technology event that focuses on the practical and applied aspects of the power electronics business. The conference provides ample opportunities for networking, offering a range of activities from technical and industry sessions to social events and exhibitor presentations. APEC caters to a diverse group of professionals in the field of power electronics, ranging from designers of power supplies, DC-DC converters, and motor drives to equipment OEMs that use power supplies, as well as manufacturers and suppliers.

    Additionally, professional education seminars are available for attendees who wish to stay updated on the latest industry trends. These seminars offer in-depth discussions of important and complex power electronics topics that can vary from introductory to advanced in technical level.

    Original – SemiQ

    Comments Off on SemiQ to Show Its Latest SiC Portfolio at the APEC in California
  • OMRON Enables One of Japan’s Smallest and Lightest V2X Charging Systems Using Infineon's GaN Solutions

    OMRON Enables One of Japan’s Smallest and Lightest V2X Charging Systems Using Infineon’s GaN Solutions

    3 Min Read

    Infineon Technologies AG announced its partnership with OMRON Social Solutions Co. Ltd., a pioneering company in social systems technology. Combining Infineon’s first-class gallium nitride (GaN) based power solutions with the innovative circuit topology and control technology of OMRON now enables one of Japan’s smallest and lightest vehicle-to-everything (V2X) charging systems by OMRON Social Solutions.

    This partnership will further drive innovation towards wide bandgap materials in power supplies, help to accelerate the transition to renewable energies, a smarter grid, and the adoption of electric vehicles, while fostering decarbonization and digitalization. 

    For the V2X system, KPEP-A series, Infineon’s CoolGaN™ technology is utilized combined with a unique control technology. OMRON Social Solutions has upgraded its EV charger and discharger system now allowing for bi-directional charging and discharging paths between renewable energy sources, the grid, and EV batteries.

    The KPEP-A series is one of the smallest and lightest multi-V2X systems in Japan with a 60% reduction in size and weight compared to similar conventional charger and discharger designs yet providing a charging capability of 6 kW. With the integration of Infineon’s CoolGaN solution, the power efficiency of the V2X systems has increased by more than 10% at light load and around 4% at rated load. By improving efficiency and a reduction in size and weight, the new system allows easier installation and maintenance while enabling more elegant designs and offering a wider range of options for installation locations.

    “We are thrilled to partner with OMRON Social Solutions as our CoolGaN based solutions directly contribute to speed up the transition to renewable energies which reduces CO2 emissions and drives decarbonization,” said Adam White, Division President Power & Sensor Systems at Infineon. “It will also make charging of electric vehicles easier and more convenient for consumers, helping to overcome one of the biggest barriers to EV adoption.”

    Atsushi Sasawaki, Managing Executive Officer and Senior General Manager for Energy Solutions Business of OMRON Social Solutions said: “Having access to a broad portfolio of WBG solutions significantly increases the functionality, performance and quality of our products. With Infineon, we get the best-in-class application know-how for creating new and improved charging and discharging systems, providing a high level of satisfaction for our customers and end-users. We look forward to further developing GaN- and SiC-based power solutions together with Infineon to help drive renewable energy and electric vehicles.”

    Wide bandgap semiconductors made of silicon carbide and gallium nitride differ significantly from conventional semiconductors as they allow for greater power efficiency, smaller size, lighter weight, and lower overall cost. Infineon offers the broadest product and technology portfolio including silicon, silicon carbide and gallium-nitride-based devices.

    As the leading power supplier with more than two decades of heritage in SiC and GaN technology development, Infineon caters to the need for smarter, more efficient energy generation, transmission, and consumption.

    Original – Infineon Technologies

    Comments Off on OMRON Enables One of Japan’s Smallest and Lightest V2X Charging Systems Using Infineon’s GaN Solutions
  • Renesas Electronics Adds Transphorm's GaN to Its Power Portfolio

    Renesas Electronics Adds Transphorm’s GaN to Its Power Portfolio

    3 Min Read

    Renesas Electronics Corporation and Transphorm, Inc. announced that they have entered into a definitive agreement pursuant to which a subsidiary of Renesas will acquire all outstanding shares of Transphorm’s common stock for $5.10 per share in cash, representing a premium of approximately 35% to Transphorm’s closing price on January 10, 2024, a premium of approximately 56% to the volume weighted average price over the last twelve months and a premium of approximately 78% to the volume weighted average price over the last six months.

    The transaction values Transphorm at approximately $339 million. The acquisition will provide Renesas with in-house GaN technology, a key next-generation material for power semiconductors, expanding its reach into fast-growing markets such as EVs, computing (data centers, AI, infrastructure), renewable energy, industrial power conversion and fast chargers/adapters.

    Demand for highly efficient power systems is increasing as building blocks for carbon neutrality. To address this trend, an industry-wide transition toward wide bandgap (“WBG”) materials, represented by silicon carbide (“SiC”) and GaN, is also being seen. These advanced materials allow a broader range of voltage and switching frequency than conventional silicon-based devices. To build on this momentum, Renesas has announced the establishment of an in-house SiC production line, supported by a 10 year SiC wafer supply agreement.

    Renesas now aims to further expand its WBG portfolio with Transphorm’s expertise in GaN, an emerging material that enables higher switching frequency, lower power losses, and smaller form factors. These benefits empower customers’ systems with greater efficiency, smaller and lighter composition, and lower overall cost.

    As such, demand for GaN is predicted to grow by more than 50 percent annually, according to an industry study. Renesas will implement Transphorm’s auto-qualified GaN technology to develop new enhanced power solution offerings, such as X-in-1 powertrain solutions for EVs, along with computing, energy, industrial and consumer applications.

    “Transphorm is a company uniquely led by a seasoned team rooted in GaN power and with origins from the University of California at Santa Barbara,” said Hidetoshi Shibata, CEO of Renesas. “The addition of Transphorm’s GaN technology builds on our momentum in IGBT and SiC. It will fuel and expand our power portfolio as a key pillar of growth, offering our customers the full ability to choose their optimal power solutions.”

    “Combined with Renesas’ world-wide footprint, breadth of solution offerings and customer relationships, we are excited to pave the way for industry-wide adoption of WBG materials and set the stage for significant growth.

    This transaction will also allow us to offer further expanded services to our customers and deliver significant immediate cash value to our stockholders,” said Dr. Primit Parikh, Co-founder, President and CEO of Transphorm and Dr. Umesh Mishra, Co-founder and CTO of Transphorm. “Additionally, it will provide a strong platform for our exceptional team to further Transphorm’s leading GaN technology and products.”

    The board of directors of Transphorm has unanimously approved the definitive agreement with respect to the transaction and recommended that Transphorm stockholders adopt such definitive agreement and approve the merger. Concurrently with the execution of the definitive agreement, KKR Phorm Investors L.P., which holds approximately 38.6% of Transphorm’s outstanding common stock, has entered into a customary voting agreement with Renesas to vote in favor of the transaction.

    The transaction is expected to close in the second half of calendar year 2024, subject to Transphorm stockholder approval, required regulatory clearances and the satisfaction of other customary closing conditions.

    Original – Renesas Electronics

    Comments Off on Renesas Electronics Adds Transphorm’s GaN to Its Power Portfolio