• Wolfspeed Celebrates Topping out of Construction at John Palmour Manufacturing Center for Silicon Carbide

    Wolfspeed Celebrates Topping out of Construction at John Palmour Manufacturing Center for Silicon Carbide

    3 Min Read

    Wolfspeed, Inc. hosted Senator Thom Tillis (R-NC) and other local officials, community partners, and employees at a ceremony to celebrate the topping out of construction at the $5 billion John Palmour Manufacturing Center for Silicon Carbide. Located in Chatham County, North Carolina, the JP will produce 200mm silicon carbide wafers, significantly expanding Wolfspeed’s materials capacity, and meet the demand for next generation semiconductors critical to the energy transition and AI.

    “We are excited to mark this critical milestone alongside our hard-working team, loyal customers, community partners, and ardent supporters like Senator Thom Tillis,” said Wolfspeed President and CEO, Gregg Lowe.

    “This facility is a testament to Wolfspeed’s commitment to our local community and domestic workforce, furthering our position as the global leader in silicon carbide production. The JP will help maintain America’s lead in energy innovation, and unlock significant benefits for our local community by growing the state’s economy by more than $17.5 billion over the next two decades and creating 1,800 good-paying jobs by 2030.”

    “Wolfspeed’s $5 billion investment in Chatham County is another example of why North Carolina is the best state in the country to do business,” said Senator Tillis. “I was proud to vote in favor of the CHIPS and Science Act, which provides critical support for domestic semiconductor manufacturing, and I applaud Wolfspeed’s commitment to developing technology here in North Carolina that supports our national security and economic interests.”

    The JP represents a total investment of $5 billion, complemented by public and private support, to help accelerate the transition from silicon to silicon carbide and ramp up supply of this material recently deemed as critical to the energy transition by the U.S. Department of Energy. By the end of 2024, phase one of construction is expected to be completed on the 445-acre site.

    The ramp of the JP will support recently signed customer agreements with Renesas, Infineon, and additional companies, while driving meaningful progress towards Wolfspeed’s long-term growth strategy. The JP will primarily produce 200mm silicon carbide wafers, which are 1.7x larger than 150mm wafers, translating to more efficient wafers and ultimately, lower costs. The JP underpins Wolfspeed’s vision of accelerating the adoption of silicon carbide semiconductors across a wide array of end-markets and unlocking a new era of energy efficiency.

    Wolfspeed currently produces more than 60% of the world’s silicon carbide materials at its Durham, N.C. headquarters, and is engaged in a $6.5 billion capacity expansion effort to dramatically increase production.

    Original – Wolfspeed

    Comments Off on Wolfspeed Celebrates Topping out of Construction at John Palmour Manufacturing Center for Silicon Carbide
  • Sibasish Laha of Fraunhofer IISB Wins Young Engineer Award of the ECPE

    Sibasish Laha of Fraunhofer IISB Wins Young Engineer Award of the ECPE

    2 Min Read

    In the paper “Milliseconds Power Cycling (PCmsec) Driving Bipolar Degradation in Silicon Carbide Power Devices”, Sibasish Laha from Fraunhofer IISB and his co-authors Jürgen Leib, Andreas Schletz, Martin Maerz, Christian Liguda, Firas Faisal and Davood Momeni describe an innovative approach to silicon carbide (SiC) power cycling.

    Until now, bipolar degradation (BD) tests have not been sufficiently differentiated in the investigation of failure and fault mechanisms for SiC power devices. SiC power products may experience voltage degradation which stems from the stacking faults (SFs) growth, commonly known as BD. To properly evaluate the BD impact on the electric performance of devices, it is important to distinguish it from other stress-related degradation such as power metal or interconnection.

    This aspect has not yet been addressed, although the BD mechanism is well understood. The paper outlines a methodology by modifying the power cycling test (PCsec) to PCmsec in order to systematically investigate the effect of BD while controlling the impact of thermal degradation. This method enables a thorough evaluation of the distinct influences of both degradation contributors.

    The complete paper will soon be available in the CIPS proceedings. Until then, feel free to download the paper presentation on event page.

    There you can also find all our contributions to CIPS 2024:

    • Modified Approach for the Rainflow Counting Analysis of Temperature Load Signals in Power Electronics Modules – Oral presentation by S. Letz; Co-authors: D. Zhao, J. Leib, B. Eckardt, M. März  

    • Milliseconds Power Cycling (PCmsec) Driving Bipolar Degradation in Silicon Carbide Power Devices – Oral presentation by S. Laha; Co-authors: D. Momeni, J. Leib, A. Schletz, M. März, C. Liguda, F. Faisal

    • Challenges of Junction Temperature Calibration of SiC MOSFETs for Power Cycling – a Dynamic Approach – Poster by J. Breuer, F. Dresel, A. Schletz, J. Klier, J. Leib, M. März, B. Eckardt

    • Wide Bandwidth PCB Rogowski Coil Current Sensor with Droop Suppression and DC Restoration for In-Situ Inverter Measurements – Poster by S. Quergfelder, J. Sax, T. Heckel, B. Eckardt, M. März

    Original – Fraunhofer IISB

    Comments Off on Sibasish Laha of Fraunhofer IISB Wins Young Engineer Award of the ECPE
  • Innoscience responds to Infineon's Lawsuit

    Innoscience Responds to Infineon’s Lawsuit

    2 Min Read

    Innoscience Technology firmly denounces the accusations made by Infineon Technologies Austria AG in a recent patent infringement lawsuit against three Innoscience entities. Infineon filed this lawsuit in a U.S. district court in California on March 13, 2024, and asserted a single U.S. patent.

    Innoscience denies Infineon’s allegations of patent infringement as well as the validity of the Infineon patent. Innoscience will vigorously defend itself and is confident that it will prevail. Infineon’s intention with this litigation is also in question, as it has asserted a patent that has significant defects. Particularly, even a cursory review of Infineon’s patent portfolio reveals that the alleged “invention” of the asserted patent was already disclosed in Infineon’s own earlier prior art patents, raising concerns that it may have committed fraud on the United States Patent and Trademark Office, for not making proper disclosures during the prosecution of the asserted defective patent.

    In addition, contrary to Infineon’s wrong characterization that the claims of the asserted defective patent “cover core aspects of GaN power semiconductors,” the lawsuit only concerns a small fraction of Innoscience’s packaged high-voltage (650V-700V) GaN transistors and does not affect the vast majority of its other products (including unpackaged transistors and wafers, low-voltage transistors, and certain packaged transistors).

    Therefore, the lawsuit should have little to no effect on Innoscience’s current ability to make, use, sell, offer to sell, or import into the United States its products for customers. Innoscience respects others’ valid IP rights and is also dedicated to developing its own IP portfolio. Despite being an eight-year old company, Innoscience has filed more than 800 patent applications globally. Innoscience’s R&D team boasts 500+ technical experts across the world.

    Through continuing innovation, Innoscience has produced GaN devices to power a diverse range of products, from power delivery chargers to data centers and smartphones, showcasing its ability to align with evolving application demands and adapt to diverse customer specifications.

    Moreover, Innoscience has always sought a cooperative and mutually beneficial approach to develop the global GaN industry, even among others in the same industry. Innoscience intends to prevail in this pending lawsuit and is determined to remain a trusted and reliable partner for its customers and contribute to their success by offering top-notch and versatile products and solutions based on Innoscience’s home-grown, superior technologies.

    Original – Innoscience Technology

    Comments Off on Innoscience Responds to Infineon’s Lawsuit
  • STMicroelectronics Collaborates with Compuware Technology on a SiC-based Reference Design for Server Power

    STMicroelectronics Collaborates with Compuware Technology on a SiC-based Reference Design for Server Power

    2 Min Read

    STMicroelectronics announced a collaboration with Compuware Technology Inc, (Compuware), a leading provider of high-efficiency power supplies, on a reference design for server power using ST’s industry-leading silicon carbide (SiC), galvanic isolation, and microcontroller technologies. This reference design provides unparalleled power-supply options for digital power converter applications including server, datacenter and telecom power.

    As demand for digital services continues to grow, fueled by Artificial Intelligence (AI), 5G, and the Internet of Things (IoT), keeping power usage under control is an important piece of the sustainability puzzle for data centers. The STDES-3KWTLCP reference design is perfect for a 3kW and higher wattage CRPS (Common Redundancy Power Supply) server power supply. This technical advancement comes with superior efficiency, faster switching, reduced energy losses, and better thermal management capabilities. In addition, this total system solution shortens time-to-market.

    Compuware stands as a global power supply leader, holding the world record for the highest number of 80 PLUS Titanium certifications, ensuring unparalleled power efficiency. Engineered for excellence, Compuware power solutions are the ideal choice for HPC, AI, Deep Learning, Cloud, and advanced applications. With high power density, it optimizes space usage without compromising reliability and efficiency, setting a new performance standard in demanding computing environments.

    “Combining ST’s latest SiC MOSFET, galvanic isolation, and microcontroller technologies with Compuware’s leading-edge power energy expertise is helping Compuware unleash our design creativity to develop high-density and -efficiency solutions. Now we can achieve 89W/in.3 power density, a small size, and high power output, this reference design is a great choice for power-hungry, high-performance computing applications,” according to Robin Cheng, Vice President at Compuware.

    “With a focus on the Industrial market, ST’s Power & Energy Competence Center provides low-power, mid-power, and high-power solutions with the most advanced ST technologies to our customers, and this reference design- STDES-3KWTLCP can help our customers increase energy efficiency and reduce time-to-market using ST’s efficient and reliable power solutions,” said Eric Chou, Head of Power & Energy Competence Center at STMicroelectronics.

    Original – STMicroelectronics

    Comments Off on STMicroelectronics Collaborates with Compuware Technology on a SiC-based Reference Design for Server Power
  • Heraeus Invests in Compound Semiconductor (Xiamen) Technology Co. (CSMH), a Material Supplier of Premium Industrial Diamond

    Heraeus Invests in Compound Semiconductor (Xiamen) Technology Co. (CSMH), a Material Supplier of Premium Industrial Diamond

    3 Min Read

    Heraeus is making a multi-million-euro investment in Compound Semiconductor (Xiamen) Technology Co. (CSMH), a China-headquartered material supplier of premium industrial diamond. This strategic partnership aims to drive innovations in the semiconductor industry by leveraging diamond’s unique thermal conductivity and electrical insulation properties.

    Heraeus signed an investment agreement with CSMH and the deal is expected to close in several weeks. As part of the agreement, Heraeus will hold a stake in the company and receive a seat on the board of directors.

    Single-crystal diamond is ultra-wideband gap (UWBG) semiconductor material with the highest known thermal conductivity, surpassing existing thermal solutions such as copper by several times. Typical silicon has a thermal conductivity around 140 W/(m-K), copper is about 400 W/(m-K), and diamond has a much higher thermal conductivity up to 2200 W/(m-K). This allows heat to be dissipated more efficiently, enabling high-performance components to endure with maximum efficiency.

    In addition to its superior heat dissipation properties, diamond also withstands extremely high voltages without causing an electric breakdown. This is critical for advancing miniaturization, efficiency, and robustness in power electronics.

    “This investment reinforces Heraeus’ commitment to cutting-edge material start-ups and emphasizes its strategic focus on the semiconductor market. With CSMH’s outstanding diamond wafer technologies, we expect to set new standards to accelerate AI and cloud computing, as well as revolutionize inverter architecture for EVs,” said Dr. Steffen Metzger, member of the Heraeus Executive Board.

    CSMH’s core business includes the production of polycrystalline and large-sized monocrystalline diamonds, which are particularly important for high-end applications in the semiconductor industry. With already 40 patents – consisting of 23 invention patents and 17 utility models – the company has successfully established itself as an innovator and technical specialist.

    “We are very excited to partner with a global industry leader like Heraeus to realize our vision to be the world’s advanced compound semiconductor material provider. Being coined as ‘the ultimate semiconductor’, diamond has many excellent performance parameters such as high pressure resistance, large radio frequency, and high-temperature resistance,” noted Zhang Xing, CEO of CSMH. “The expertise that Heraeus has in global market resources, technology insights, and industrial-scale production of advanced materials will empower CSMH to promote diamond for more applications in the near future.”

    Due to its exceptional physical and chemical properties, diamond’s other prominent application includes quantum sensors, optics/detection and high-power lasers, among others. CSMH’s target customers include major players in aerospace, power electronics, optical communication, Artificial Intelligence, photovoltaics, electric vehicles, and sensors.

    Industrial diamonds can be produced in a matter of weeks, at a lower cost and with greater environmental friendliness. The cooperation with CSMH aligns with Heraeus’ vision of co-developing next-generation semiconductor solutions and preparing them for use. The combination of CSMH’s specialized expertise in diamond materials and Heraeus’ global market access promises a successful expansion into international markets.

    Original – Heraeus

    Comments Off on Heraeus Invests in Compound Semiconductor (Xiamen) Technology Co. (CSMH), a Material Supplier of Premium Industrial Diamond
  • Axcelis Technologies to Deliver Purion M™ SiC Implanters to Several Power Device Chipmakers in China

    Axcelis Technologies to Deliver Purion M™ SiC Implanters to Several Power Device Chipmakers in China

    2 Min Read

    Axcelis Technologies, Inc. announced multiple shipments of the Company’s Purion M™ SiC medium current implanter to several leading power device chipmakers located in China. The systems, which shipped in the first quarter, will be used for 150mm production of silicon carbide power devices supporting automotive, industrial, energy, and other power intensive applications.

    President and CEO, Russell Low commented, “We look forward to supporting our customers as they expand their manufacturing capabilities in this growing silicon carbide power device segment. To meet market demand, chipmakers need to maximize their yield and add capacity, while meeting a range of technical challenges unique to power devices. The Purion M SiC Power Series platform’s common and flexible architecture, coupled with its uniquely differentiated high temperature capability, makes it ideally suited for this expanding application.”

    Executive Vice President of Marketing and Applications, Greg Redinbo added “The Purion M SiC tool provides customers an implanter with a broad dose and energy range perfect for the early phases of a fab production ramp. The Purion M SiC sets the stage for the future introduction of the Purion H200™ SiC and Purion XE™ SiC. Use of the full Purion Power Series family enables higher fab productivity, lower cost of ownership and the ability to manufacture more advanced silicon carbide power devices.”

    Original – Axcelis Technologies

    Comments Off on Axcelis Technologies to Deliver Purion M™ SiC Implanters to Several Power Device Chipmakers in China
  • European Space Agency in Search for the Ways to Improve Power Systems Using SiC Technology

    European Space Agency in Search for the Ways to Improve Power Systems Using SiC Technology

    3 Min Read

    Recently the European Space Agency (ESA) started its search for the technological advantage to improve their systems. Lead by research fellow Dr. Antxon Arrizabalaga, the project is aimed at studying the latest semiconductor technologies and exploring the impact they can have in the future of the space industry.

    During its research, Dr. Antxon Arrizabalaga is looking forward to answer the following questions:

    • Which are the next system-level figures the space power industry wants to achieve?
    • Can the wide bandgap semiconductors help to achieve these figures?
    • Which semiconductor ratings are demanded by the space power industry for each application?

    At the moment the research project lead by Dr. Arrizabalaga is focusing on the silicon carbide (SiC) power semiconductor devices, as they are better suited for the requirements of the high-power applications. The team has already had several meetings with the main European space power companies discussing the points of interest mentioned above.

    As a result, ESA received rich feedback with industry requirements and new ideas. And as anticipated, most of the companies are looking to the ways to increase power of their systems.

    Thus, the following applications were mentioned the most:

    • Latching current limiters (LCL) for high power distribution
    • High-voltage (HV), increasing the traditional bus voltage, and high-power (HP) DC-DC converters
    • Rectification and synchronous rectification
    • HP motor drives
    • Very HV applications, around and over 1 kV
    the ratings of the semiconductor devices required by the industry
    the ratings of the semiconductor devices required by the industry, part 2

    Figure 1. The ratings of the semiconductor devices required by the industry for each application

    According to Dr. Arrizabalaga, ESA classifies innovations in three categories, according to the degree of innovation they bring when compared to the state-of-the-art:

    • Enhancing. It brings a substantial improvement to the state-of-the-art system.
      • Based on a technology replacement
      • For SiC devices it means replacing the Si devices in an existing application and optimizing the system to get system-level benefits
      • Low risk, development time and cost for manufacturers
      • Straightforward adoption by industry and high probability of success

    • Enabling. It will allow a new feature, new application, or even a new mission.
      • Critical technologies for a certain feature, application or mission
      • For SiC devices it means that without the adoption of such devices, the new desired feature, application or mission is no longer possible
      • Medium-high risk for manufacturers, higher development cost and effort, since it has never been done before
      • More challenging adoption by industry, and lower probability of success

    • Game-changing. It promises to bring entirely new capabilities (not considered for this study).
    classification of the applications mentioned by the industry

    Figure 2. Classification of the applications mentioned by the industry and the main drivers needed to be optimized for each application.

    The European Space Agency research team is looking forward to support the successful adoption of the wide bandgap (WBG) power semiconductor devices by the European space power industry, giving the European industry a competitive edge.

    Original – Dr. Antxon Arrizabalaga

    Comments Off on European Space Agency in Search for the Ways to Improve Power Systems Using SiC Technology
  • EPC Announced Availability of a 3-phase BLDC Motor Drive Inverter Using EPC2619 eGaN® FET

    EPC Announced Availability of a 3-phase BLDC Motor Drive Inverter Using EPC2619 eGaN® FET

    2 Min Read

    EPC announces the availability of the EPC9193, a 3-phase BLDC motor drive inverter using the EPC2619 eGaN® FET. The EPC9193 operates with a wide input DC voltage ranging from 14 V and 65 V and has two configurations – a standard unit and a high current version:

    • The EPC9193 standard reference design uses a single FET for each switch position and can deliver up to 30 ARMS maximum output current.
    • A high current configuration version of the reference design, the EPC9193HC, uses two paralleled FETs per switch position with the ability to deliver up to 60 Apk (42 ARMS) maximum output current.

    Both versions of the EPC9193 contain all the necessary critical function circuits to support a complete motor drive inverter including gate drivers, regulated auxiliary power rails for housekeeping supplies, voltage, and temperature sense, accurate current sense, and protection functions.  The EPC9193 boards measure just 130 mm x 100 mm (including connector).   

    Major benefits of a GaN-based motor drive are exhibited with these reference design boards, including lower distortion for lower acoustic noise, lower current ripple for reduced magnetic loss, and lower torque ripple for improved precision.  The extremely small size of this inverter allows integration into the motor housing resulting in the lowest EMI, highest density, and lowest weight.

    EPC provides full demonstration kits, which include interface boards that connect the inverter board to the controller board development tool for fast prototyping that reduce design cycle times.

    “GaN-based inverters enhance motor efficiency and lower costs, expensive silicon MOSFET inverters”, said Alex Lidow, CEO of EPC. “This results in smaller, lighter, quieter motors with increased torque, range, and precision.”

    Original – Efficient Power Conversion

    Comments Off on EPC Announced Availability of a 3-phase BLDC Motor Drive Inverter Using EPC2619 eGaN® FET
  • Teledyne e2v HiRel Announced Radiation Tolerant RF and Power Products for the New Space Market

    Teledyne e2v HiRel Announced Radiation Tolerant RF and Power Products for the New Space Market

    3 Min Read

    Teledyne e2v HiRel announced the availability of radiation tolerant RF and Power products for the evolving New Space market. Qualified based on the EEE-INST-002 space grade standard, these plastic packaged products are qualified for the harsh environment of space with –55°C to +125°C temperature operating ratings, and are radiation tolerant for use in LEO, MEO, and GEO missions.

    The RF products include several low noise amplifiers (LNA) and are ideal for demanding high-reliability space applications where low noise figure, minimal power consumption, and small footprint are critical to mission success. They are ideally suited for satellite communication systems that are increasing the power of radio signals so utilizing components with minimal noise and distortion help minimizing the degradation of digital signals.

    These LNAs are developed in the radiation tolerant pHEMT technology semiconductor process technology. The monolithic microwave integrated circuit (MMIC) products are available in dual-flat no lead (DFN) plastic over molded SMT packages and are biased over single positive VDD supply voltages, eliminating the need for negative power rail voltages.

    • The TDLNA002093SEP delivers a low noise figure of less than 0.37 dB, IDDQ from 30 mA to 100mA, and exceptional performance from 1 GHz (L-band) to 6 GHz (S-band) frequencies.
    • The TDLNA0430SEP delivers an industry leading low noise figure of less than 0.35 dB, IDDQ of 60mA and exceptional performance from 0.3 GHz (UHF) to 3 GHz (S-band) frequencies.
    • The TDLNA2050SEP delivers an industry leading low noise figure of less than 0.4 dB, IDDQ of 60mA and exceptional performance from 2.0 GHz (S-band) to 5 GHz (C-band) frequencies.


    The Power products offerings include Gallium Nitride (GaN) technology High Electron Mobility Transistors up to 650V, currents up to 90 Amp, high switching frequencies, and low RDSON. These GaN solutions have easy gate-drive requirements and enable high power density designs with four times less space requirements than traditional MOSFETs. The TDG650E60xSP parts are available in extremely small non hermetic packages with either top-side and bottom-side thermal pads and are ideally suited for satellite power supply systems with space production screening.


    “Today we’re announcing our New Space products offering of RF and Power products optimized for space applications,” said Mont Taylor, Vice President and Business Development Manager at Teledyne e2v HiRel. “These LNAs with their ultra low noise figures coupled with the high power density capabilities of GaN transistors, we believe these products will enable system designers with superior solutions for space based satellite communication applications.”

    Original – Teledyne e2v HiRel

    Comments Off on Teledyne e2v HiRel Announced Radiation Tolerant RF and Power Products for the New Space Market
  • Infineon Technologies Filed a Lawsuit against Innoscience Technology

    Infineon Technologies Filed a Lawsuit against Innoscience Technology

    2 Min Read

    Infineon Technologies AG filed a lawsuit, through its subsidiary Infineon Technologies Austria AG, against Innoscience (Zhuhai) Technology Company, Ltd., and Innoscience America, Inc. and affiliates. Infineon is seeking permanent injunction for infringement of a United States patent relating to gallium nitride (GaN) technology owned by Infineon.

    The patent claims cover core aspects of GaN power semiconductors encompassing innovations that enable the reliability and performance of Infineon’s proprietary GaN devices. The lawsuit was filed in the district court of the Northern District of California.

    Infineon alleges that Innoscience infringes the Infineon patent mentioned above by making, using, selling, offering to sell and/or importing into the United States various products, including GaN transistors for numerous applications, within automotive, data centers, solar, motor drives, consumer electronics, and related products used in automotive, industrial, and commercial applications.

    “The production of gallium nitride power transistors requires completely new semiconductor designs and processes”, said Adam White, President of Infineon’s Power & Sensor Systems Division. “With nearly two decades of GaN experience, Infineon can guarantee the outstanding quality required for the highest performance in the respective end products. We vigorously protect our intellectual property and thus act in the interest of all customers and end users.”

    Infineon has been investing in R&D, product development and the manufacturing expertise related to GaN technology for decades. Infineon continues to defend its intellectual property and protect its investments.

    On 24 October 2023, Infineon announced the closing of the acquisition of GaN Systems Inc., becoming a leading GaN power house and further expanding its leading position in power semiconductors.

    Infineon leads the industry with its GaN patent portfolio, comprising around 350 patent families. Market analysts expect the GaN revenue for power applications to grow by 49% CAGR to approx. US$2 billion by 2028 (source: Yole, Power SiC and GaN Compound Semiconductor Market Monitor Q4 2023). Gallium nitride is a wide bandgap semiconductor with superior switching performance that allows smaller size, higher efficiency and lower-cost power systems.

    Original – Infineon Technologies

    Comments Off on Infineon Technologies Filed a Lawsuit against Innoscience Technology