-
LATEST NEWS / PRODUCT & TECHNOLOGY / SiC / WBG2 Min Read
Infineon Technologies AG introduced the 750V G1 discrete CoolSiC™ MOSFET to meet the increasing demand for higher efficiency and power density in industrial and automotive power applications. The product family includes both industrial-graded and automotive-graded SiC MOSFETs that are optimized for totem-pole PFC, T-type, LLC/CLLC, dual active bridge (DAB), HERIC, buck/boost, and phase-shifted full bridge (PSFB) topologies.
The MOSFETs are ideal for use in both typical industrial applications, such as electric vehicle charging, industrial drives, solar and energy storage systems, solid state circuit breaker, UPS systems, servers/ datacenters, telecom, and in the automotive sector, such as onboard chargers (OBC), DC-DC converters, and many more.
The CoolSiC MOSFET 750 V G1 technology features excellent RDS (on) x Q fr and superior RDS (on) x Q oss Figure-of-Merits (FOMs), resulting in ultra-high efficiency in hard-switching and soft-switching topologies respectively. Its unique combination of high threshold voltage (V GS(th), Typ. of 4.3 V) with low Q GD/Q GS ratio ensures high robustness against parasitic turn-on and enables unipolar gate driving, leading to increased power density and low cost of the systems.
All devices use Infineon’s proprietary die-attach technology which delivers outstanding thermal impedance for equivalent die sizes. The highly reliable gate oxide design combined with Infineon’s qualification standards delivers robust and long-term performance.
With a granular portfolio ranging from 8 to 140 mΩ RDS (on) at 25°C, this new CoolSiC MOSFET 750 V G1 product family meets a wide range of needs. Its design ensures lower conduction and switching losses, boosting overall system efficiency.
Its innovative packages minimize thermal resistance, facilitate improved heat dissipation, and optimize in-circuit power loop inductance, thereby resulting in high power density and reduced system costs. It’s important to note that this product family features the cutting-edge QDPAK top-side cooled package.
Original – Infineon Technologies
-
LATEST NEWS / SiC / WBG3 Min Read
Vishay Intertechnology, Inc. announced that at the Applied Power Electronics Conference and Exposition (APEC) 2024, the company is showcasing its broad portfolio of passive and semiconductor solutions that address the latest trends in power electronics — from energy harvesting, electric vehicle (EV) powertrains, and mass commercialization to efficient and effective power electronics for power tools and switching regulators that shorten the iterative design cycle.
Taking center stage in booth 1607 will be Vishay’s newly released 1200 V MaxSiC™ series silicon carbide (SiC) MOSFETs, which deliver on-resistances of 40, 80 and 250 mΩ in standard packages for industrial applications, with custom products also available. In addition, Vishay will provide a roadmap for 650 V to 1700 V SiC MOSFETs with on-resistances ranging from 12 mΩ to 1 Ω.
Vishay’s SiC platform is based on a proprietary MOSFET technology — enabled through the company’s recent acquisition of MaxPower Semiconductor, Inc. — which will address market demands in traction inverter, photovoltaic energy storage, on-board charger, and charging station applications. At the booth, Vishay’s experts will also be discussing upcoming planned releases of the MaxSiC platform, including AEC-Q101 Automotive Grade products.
At APEC 2024, Vishay will also be offering a variety of product-focused demonstrations highlighting IHPT haptic actuators; the THJP ThermaWick® Thermal Jumper; the pulse performance of MELF, CRCW / CRCW-HP thick film, and MCS, MCU, and MCW thin film chip resistors; and the thermal capabilities of the PCAN and RCP high power thin and thick film resistors. In addition, application-focused demonstrations will include:
- An 800 V SiC MOSFET heat pump with a 100 % Vishay BOM
- A high voltage intelligent battery shunt for 400 V and 800 V batteries
- A six-phase DC/DC converter for mild hybrid vehicles with 48 V boardnets that provides power to 12 V loads up to 3 kW with high efficiency to 97 %
- A semiconductor-based, resettable eFuse for 800 V electric vehicle systems
Additional Vishay passive components on display at APEC 2024 will include the IHDM series of high current, edge-wound through hole inductors with continuous operation to +180 °C; hybrid planar and integrated transformers; wireless charging coils; NTC thermistors and PTC thermistors, including the PTCEL series capable of handling energy absorption up to 240 J; high power wirewound, thin film, and thick film resistors, including the anti-surge RCS with power to 0.5 W in the 0805 case size; high voltage thick film resistors and dividers; high voltage aluminum, ceramic, and power electronic capacitors (PEC); high energy tantalum capacitors; and robust metallized polypropylene film capacitors, including the MKP1848e DC-Link capacitor with high temperature operation to +125 °C.
Highlighted Vishay semiconductor solutions will consist of the SiC967 high voltage synchronous buck regulator with integrated power MOSFETs and inductors; 400 V, 600 V, and 1200 V standard rectifiers in SlimDPAK 2L and SMPD 2L packages with high creepage distance; 650 V and 1200 V SiC Schottky diodes up to 12 A in eSMP® series and power packages for AC/DC power factor correction (PFC) and ultra high frequency output rectification; and transient voltage suppressors (TVS).
Original – Vishay Intertechnology
-
GaN / LATEST NEWS / WBG2 Min Read
Navitas Semiconductor announced that its GaNFast™ power ICs drive Samsung’s 25 W “Super-Fast Charging” (SFC) for the new, AI-enhanced Galaxy S24 smartphone.
Flagship hardware specifications include a 2340 x 1080 (FHD+) dynamic AMOLED 2X, and 120 Hz screen, plus the Galaxy S24 delivers innovative and practical AI features to help transform the way users communicate, create and discover the world. Galaxy AI features like Live Translate, Chat Assist and new “Circle to Search” with Google, to improve nearly every experience that S24 users can enjoy.
The 25 W GaNFast unit delivers 50% charge to the high-capacity 4000 mAh battery in only 30 minutes, while the USB PD 3.0 (Type-C) specification makes it compatible with other Samsung products including Galaxy Buds2 audio, Galaxy Z Fold5, Galaxy Flip and Galaxy A23.
Designed with sustainability in mind, the 25 W power adapter features a 75% reduction in power consumption sleep mode. Navitas’ GaNFast technology is deployed in a high-frequency, quasi-resonant (HFQR) topology running at 150 kHz – 3x faster than standard silicon designs – and delivers a 30% size shrink vs. conventional charger designs.
“We are excited to extend our relationship with Samsung as they continue to develop groundbreaking mobile phone technology,” said David Carroll, Sr. VP Worldwide Sales for Navitas. “Deploying GaNFast ICs has allowed Samsung to create an ultra-compact, lightweight and efficient 25W adapter that can rapidly re-charge the new Galaxy S24 and a variety of other phones and accessories in the Samsung range.”
Original – Navitas Semiconductor
-
Innoscience Technology will demonstrate industry-leadership at the upcoming IEEE Applied Power Electronics Conference and Exposition (APEC) 2024.
At the industrial session, Innoscience will address the exponential demand in power by datacenters due to the processing power necessitated by Artificial Intelligence (AI) applications. The paper will show that with Innoscience’s 650V InnoGaN, it is possible to make a 2kW AC/DC conversion PSU with a high power density and a peak efficiency above 96%, thereby meeting the recent stringent 80 Plus titanium efficiency rating.
Thanks to the absence of a body diode on GaN devices, a simple Totem pole PFC architecture can be implemented while still reaching high levels of efficiency. At the booth Innoscience will also showcase a 4.2kW AC/DC conversion PSU meeting 80 Plus titanium efficiency rating within a power density of 130W/in3.
Moreover, to address the 48V to 12V DC-DC power conversion inside the data center, Innoscience will present an all GaN HEMTs based 1kW 48V-12V unregulated LLC solution that features GaN power devices both at the primary side (100V devices) as well as at the secondary side (40V devices). In order to maximize the power density and simplify the circuit, the solution uses Innoscience’s recent integrated SolidGaN solution (ISG3201), which integrates an half-bridge (made by two 100V/3.2mOhm InnoGaN devices) with its driver, protection etc.. in one package. The final all GaN 1kW 48V-12 converter has a size of only 50mmx30mmx9mm, which is 70% smaller than a Silicon counterpart rated only 600W. The converter achieves a peak efficiency of 98.5%.
Dr. Denis Marcon, General Manager Innoscience Europe, comments: “Reliability is also an important consideration for data centers, because they operate 24/7 and they must guarantee continuity of service. Therefore, in this paper we will also present strong reliability data of Innoscience’s HV and LV GaN power devices, including end-of-life testing for life-time calculation which shows reliability data at the parts-per-billion level.”
Yi Sun, General Manager Innoscience America comments: “Innoscience today has one of the widest portfolio of GaN power device solutions covering 30V to 700V applications, a family of GaN discrete available in standard packages (e.g. QFN, FCQFN, TO252 etc..) as well as integrated GaN IC solutions that include in one chip the GaN FET, the driver, protections etc.”
Visitors to the Innoscience booth at APEC will also see new products, such as the NV100FQ030A, a 100V bidirectional IC that can be employed to deliver high efficiency in applications including battery management systems, high-side load switching in bidirectional converters, and various switching circuits in power systems.
Yi Sun, adds: “Innoscience is leading the GaN industry with many new products that are industry firsts. That is why our devices are finding applications in all markets, from consumer chargers through industrial and communications and into the automotive sector. Join us at booth 1543 to find out more.”
Innoscience presentations:
- IS02.7 – Industry Session / Tuesday Feb 27th ,11:30-11:55am “Ultra-High Frequency (10MHz) Buck Converter with GaN HEMT for Mobile Phone Application” given by Dr Pengju Kong
- IS11.1 – Industry Session / Wednesday Feb 28th, 8:30-8:55am “Efficient and compact power conversions made possible with GaN technology” given by Dr Pengju Kong.
Original – Innoscience Technology
-
Texas Instruments introduced two new power conversion device portfolios to help engineers achieve more power in smaller spaces, providing the highest power density at a lower cost. TI’s new 100V integrated gallium nitride (GaN) power stages feature thermally enhanced dual-side cooled package technology to simplify thermal designs and achieve the highest power density in mid-voltage applications at more than 1.5kW/in3.
TI’s new 1.5W isolated DC/DC modules with integrated transformers are the industry’s smallest and most power-dense, helping engineers shrink the isolated bias power-supply size in automotive and industrial systems by over 89%. Devices from both portfolios will be on display at this year’s Applied Power Electronics Conference (APEC), Feb. 25-29 in Long Beach, California.
“For power-supply designers, delivering more power in limited spaces will always be a critical design challenge,” said Kannan Soundarapandian, general manager of High Voltage Power at TI. “Take data centers, for example – if engineers can design power-dense server power-supply solutions, data centers can operate more efficiently to meet growing processing needs while also minimizing their environmental footprint. We’re excited to continue to push the limits of power management by offering innovations that help engineers deliver the highest power density, efficiency and thermal performance.”
Increase power density and efficiency with 100V integrated GaN power stages
With TI’s new 100V GaN power stages, LMG2100R044 and LMG3100R017, designers can reduce power-supply solution size for mid-voltage applications by more than 40% and achieve industry-leading power density of over 1.5kW/in3, enabled by GaN technology’s higher switching frequencies. The new portfolio also reduces switching power losses by 50% compared to silicon-based solutions, while achieving 98% or higher system efficiency given the lower output capacitance and lower gate-drive losses. In a solar inverter system, for example, higher density and efficiency enables the same panel to store and produce more power while decreasing the size of the overall microinverter system.A key enabler of the thermal performance in the 100V GaN portfolio is TI’s thermally enhanced dual-side cooled package. This technology enables more efficient heat removal from both sides of the device and offers improved thermal resistance compared to competing integrated GaN devices.
To learn more about the benefits of TI’s 100V GaN power stages for mid-voltage applications, read the technical article, “4 mid-voltage applications where GaN will transform electronic designs.”
Shrink bias power supplies by more than 89%
With over eight times higher power density than discrete solutions and three times higher power density than competing modules, TI’s new 1.5W isolated DC/DC modules deliver the highest output power and isolation capability (3kV) for automotive and industrial systems in a 4mm-by-5mm very thin small outline no-lead (VSON) package. With TI’s UCC33420-Q1 and UCC33420, designers can also easily meet stringent electromagnetic interference (EMI) requirements, such as Comité International Spécial des Perturbations Radioélectriques (CISPR) 32 and 25, with fewer components and a simple filter design.The new modules use TI’s next-generation integrated transformer technology, which eliminates the need for an external transformer in a bias supply design. The technology allows engineers to shrink solution size by more than 89% and reduce height by up to 75%, while cutting bill of materials by half compared to discrete solutions.
With the first automotive-qualified solution in this small package, designers can now reduce the footprint, weight and height of their bias supply solution for electric vehicle systems such as battery management systems. For space-constrained industrial power delivery in data centers, the new module enables designers to minimize printed circuit board area.
To learn more about the benefits of TI’s 1.5W isolated DC/DC modules, read the technical article, “How a new isolated DC/DC module can help solve power-density challenges.”
Pushing the limits of power at APEC 2024
These new devices are the latest ways TI is pushing power further and making innovation possible for engineers everywhere. At APEC 2024, TI will showcase the latest automotive and industrial designs for 48V automotive power; the first USB Power Delivery Extended Power Range full charging solution on the market; an 800V, 300kW silicon carbide-based traction inverter; high-efficiency power for server motherboards; and more.- Saturday, Feb. 24-Thursday, Feb. 29: Visit TI in the Long Beach Convention & Entertainment Center, Booth No. 1145. See TI.com/APEC for more information.
- Wednesday, Feb. 28 at 12 p.m. Pacific time: TI General Manager of Industrial Power Design Services Robert Taylor will present an industry session, “To Power Density and Beyond: Breaking Through Barriers to Achieve the Highest Power Density.” He will discuss innovations in packaging, integration and system-level techniques that are making greater power density possible.
- Throughout APEC: TI power experts will lead 20 industry and technical sessions to address power-management design challenges. The full schedule of TI experts’ industry and technical sessions is available at TI.com/APEC.
Original – Texas Instruments