-
Cambridge GaN Devices (CGD), the fabless, clean-tech semiconductor company that develops energy-efficient GaN-based power devices that make greener electronics possible, will be present at the upcoming APEC 2024, IEEE Applied Power Electronics Conference and Exposition. In addition to having its largest ever booth at the show, the company will contribute with a number of papers including an analysis of how GaN can play a part in supporting the exponential growth in power demanded by datacentres as the use of Artificial Intelligence (AI) proliferates.
GIORGIA LONGOBARDI | CHIEF EXECUTIVE OFFICER, CGD:
“With datacentres now demanding 100kW per rack and predicting even more in the very near future, power system designers are looking to employ GaN devices in new architectures. At CGD we are addressing this challenge with new devices and reference designs which we will be discussing at APEC, along with many other applications where GaN can play a huge role in enabling sustainable electronics solutions that are more efficient, have high performance and are more compact.”
CGD will present three papers at APEC:
- Tuesday 27th February, 15.00-15.30 – ‘How ICeGaN™ technology can address the datacentre challenges that digitalisation brings’, with Andrea Bricconi, Chief Commercial Officer, CGD and Peter Di Maso, VP of Business Development (Americas) CGD.
- Wednesday 28th February, 09.10-09.30 – ‘Evaluation of GaN HEMT dv/dt Immunity and dv/dt induced false turn-on energy loss’, with Nirmana Perera, Application Engineer, CGD.
- Thursday 29th February, 09:45 – 10:10: ‘Monolithic integration addresses the design challenges of GaN Power devices’, with Di Chen, Director of Business Development & Technical Marketing, CGD.
On booth 1553, CGD will present a range of demos designed to showcase industry’s first easy-to-use and scalable 650 V GaN HEMT family. ICeGaN™ H2 single-chip eMode HEMTs can be driven like a MOSFET, without the need for special gate drivers, complex and lossy driving circuits, negative voltage supply requirements or additional clamping components.
Addressing the increase in power required by server and industrial applications, CGD will show a 350 W PFC/LLC reference design using ICeGaN (650 V, 55 mΩ, H2 series). With a board power density of 23 W/in3, the bridgeless CrM Totem Pole PFC plus half-bridge LLC design has a peak efficiency of 95%, (93% average) and a no-load power consumption of 150 mW.
ANDREA BRICCONI | CHIEF COMMERCIAL OFFICER, CGD:
“GaN is now accepted as a reliable and proven technology that is able to deliver high efficiency and power density simultaneously. Datacentres, with their insatiable need for power, are an obvious application for GaN, but there are many other consumer, industrial and automotive applications where GaN can also demonstrate the ability to be a disruptive technology. CGD has delivered industry’s most easy-to-use GaN technology – ICeGaN – and we are keen to share our ideas with the audience at APEC.”
Original – Cambridge GaN Devices
-
Micro Commercial Components unveiled 1700V SiC MOSFET – SICW400N170A-BP. Designed to elevate power conversion in a range of applications, this MOSFET features ultra-low on-resistance of only 400mΩ and high blocking voltage capability. SICW400N170A-BP SiC MOSFET enables high-speed switching while ensuring minimal conduction losses — essential requirements for optimizing frequency-dependent systems.
A standard, yet durable TO-247AB package delivers effective operation at a gate-source voltage of 20V with superior thermal stability and an operating junction temperature of +175°C.
This unwavering reliability in harsh conditions only adds to the component’s appeal and versatility for various high-voltage applications, including EV charging stations and renewable energy systems.
Features & Benefits:
- High blocking voltage capability (1700V)
- Ultra-low on-resistance (400mΩ) enhances efficiency
- Low capacitance enables faster switching
- Excellent thermal stability
- High operating junction temperature (to +175°C)
- Standard TO-247AB package
Original – Micro Commercial Components
-
GaN / LATEST NEWS / PRODUCT & TECHNOLOGY / WBG2 Min Read
Innoscience Technology has launched a new 100V bi-directional member of the company’s VGaN IC family. The first family of VGaN devices rated 40V with wide on-resistance range (1.2mOhm – 12mOhm) have been successfully deployed in the USB OVP of mobile phones such as OPPO, OnePlus etc.
The new 100V VGaN (INV100FQ030A) can be employed to achieve high efficiency in 48V or 60V battery management systems (BMS), as well as for high-side load switch applications in bidirectional converters, switching circuits in power systems, and other fields. Such device it is ideal in application such as home batteries, portable charging station, e-scooters, e-bikes etc.
One VGaN replaces two back-to-back Si MOSFETs; they are connected with a common drain to achieve bidirectional switching of battery charging and discharging, further reducing on-resistance and loss significantly with respect to traditional Silicon solution. BOM count, PCB space and costs are also reduced accordingly.
The INV100FQ030A 100V VGaN IC supports two-way pass-through, two-way cut-off and no-reverse-recovery modes of operation. Devices feature an extremely low gate charge of just 90nC, ultra-low dynamic on-resistance of 3.2mΩ and small, 4x6mm package size.
Dr. Denis Marcon, General Manager, Innoscience Europe comments: “Innoscience’s continuous innovation and development of our core technology plus our 8-inch wafer GaN IDM model will accelerate the miniaturization of systems, making them more efficient and energy-saving.”
Innoscience ‘s 100V GaN series products are in mass production in En-FCQFN (exposed top side cooling) and FCQFN packaging.
Original – Innoscience Technology
-
GaN / LATEST NEWS / WBG2 Min Read
Infineon Technologies AG announced a collaboration with Worksport. Worksport Ltd. will use Infineon’s GaN power semiconductors GS-065-060-5-B-A in the converters for its portable power stations to increase efficiency and power density. Enabled by Infineon’s GaN transistors, the power converters will be lighter and smaller in size with reduced system costs. In addition, Infineon will support Worksport in the optimization of circuits and layout design to further reduce size and increase power density.
“Infineon’s high-quality standard and solid supply chain provide us with the best components to ensure power-dense converters for our COR system product line and contribute to a first-class end product performance,” said Worksport CEO Steven Rossi.
The company’s COR battery system can be integrated into a pickup truck or recharged by any solar panel or wall outlet. By replacing the former silicon switch in the power converter with Infineon’s GaN power semiconductors and operating the transistors at higher switching frequency, Worksport will be able to reduce the battery system weight by 33 percent and system costs by up to 25 percent.
The working relationship with Infineon will also help Worksport to reduce CO2 in the manufacturing process. GaN is proving itself as a game-changing technology across many markets and applications. For example, in data centers, GaN solutions have a global energy savings potential of 21 TWh annually, 10 million tons of Carbon Dioxide (CO2) equivalent.
“In order to further drive electrification and decarbonization, the industry’s power designs require innovation,” said Johannes Schoiswohl, Business Line Head GaN Systems of Infineon’s Power & Sensor Systems Division. “With our GaN power semiconductors we enable Worksport to create the next generation portable power stations that users require.”
Infineon’s GS-065-060-5-B-A is an Automotive-grade 650 V enhancement mode GaN-on-Silicon power transistor. It offers very low junction-to-case thermal resistance for demanding high power applications such as on-board chargers, industrial motor drives and solar inverters. Furthermore, it features simple gate drive requirements (0 V to 6 V) and a transient tolerant gate drive (-20 / +10 V).
Original – Infineon Technologies
-
LATEST NEWS / Si / SiC / WBG2 Min Read
VMAX, a leading Chinese manufacturer of power electronics and motor drives for new energy vehicles, has selected the new CoolSiC™ hybrid discrete with TRENCHSTOP™ 5 Fast-Switching IGBT and CoolSiC Schottky Diode from Infineon Technologies AG for its next generation 6.6 kW OBC/DCDC on-board chargers.
Infineon’s components come in a D²PAK package and combine ultra-fast TRENCHSTOP 5 IGBTs with half-rated free-wheeling SiC Schottky barrier diodes to achieve a perfect cost-performance ratio for both hard and soft switching topologies. With their superior performance, optimized power density and leading quality, the power devices are ideally suited for VMAX’s on-board chargers.
“We are proud to choose Infineon’s CoolSiC Hybrid device in our next-generation OBC, achieving higher reliability, stability, improved performance, and power density. This deepens our already strong partnership with Infineon and drives technological application innovation through close collaboration, working together to promote the thriving development of new energy vehicles,” said Jinzhu Xu, PL Director& Chief Engineer, R&D Department at VMAX.
“We are excited to strengthen our partnership with VMAX with our highly efficient hybrid products,” said Robert Hermann, Vice President for Automotive High Voltage Chips and Discretes at Infineon. “Together, we will continue to drive e-mobility advancements, providing efficient solutions that meet the requirements of the industry in terms of performance, quality and system cost.”
With its fast, hard switching TRENCHSTOP 5 650 V IGBT co-packed with zero reverse recovery CoolSiC Schottky diode, the hybrid discrete benefits from very low switching losses at switching speeds above 50 kHz. This makes the device an excellent option for high-power electric vehicle charging systems.
In addition, the robust 5 th generation CoolSiC Schottky diode offers increased robustness against surge currents, maximizing reliability. Furthermore, the diffusion soldering of the SiC diode has improved the thermal resistance (R th) to the package for small chip sizes, resulting in increased power switching capability.
With these features, it enables optimum system reliability and longevity, meeting the stringent requirements of the automotive industry. To further maximize compatibility with existing designs, the product also features a pin-to-pin compatible design based on the widely used D²PAK package.
Original – Infineon Technologies
-
GaN / LATEST NEWS / WBG2 Min Read
JEDEC Solid State Technology Association announced the publication of JEP198: Guideline for Reverse Bias Reliability Evaluation Procedures for Gallium Nitride Power Conversion Devices. Developed by JEDEC’s JC-70.1 Gallium Nitride Subcommittee, JEP198 is available for free download from the JEDEC website.
JEP198 presents guidelines for evaluating the Time Dependent Breakdown (TDB) reliability of GaN power transistors. It is applicable to planar enhancement-mode, depletion-mode, GaN integrated power solutions, and cascode GaN power transistors.
This publication covers suggested stress conditions and related test parameters for evaluating the TDB reliability of GaN power transistors using the off-state bias. The stress conditions and test parameters for both High Temperature Reverse Bias Stress and Application Specific Stress-Testing are designed to evaluate the reliability of GaN transistors over their useful lifetime under accelerated stress conditions.
“We are becoming more dependent on power electronics in all facets of our daily lives. As such, the technologies behind those systems are advancing and so too must the device-specific qualification processes. The new GaN-focused Guideline for Reverse Bias Reliability Evaluation is a critical step toward achieving that goal,” said Ron Barr, VP of Quality and Reliability, Transphorm and Co-Chair of the Task Group 701_1.
“This was a collaborative effort conducted by both GaN semiconductor and end product manufacturers. I’m proud of the work the task group delivered. It is an important framework to ensure cross-industry uniformity that will, in the end, provide power system manufacturers the necessary confidence when designing with GaN devices.”
“With the rise of renewable energy and electrification of our lives, the efficiency of power semiconductors is becoming more critical. This is where GaN power semiconductors have proven to be a valuable technology. The Guideline for Reverse Bias Reliability Evaluation is another step in improving confidence in GaN Technology and the products that are on and being brought to market,” said Dr. Kurt Smith, VP of Reliability and Qualification at VisIC Technologies and Chair of JC-70.1.
“This document was developed through collaboration of the multi-corporation team of industry experts to represent the best practices for evaluating GaN devices. It was a long multi-year process to reach consensus and the team is to be commended for the quality document and all of the hard work that went into it.”
Original – JEDEC