• Navitas Semiconductor and GreatWall Join Forces on 400V DC Power Architecture for Next-Gen AI Data Centers

    Navitas Semiconductor and GreatWall Join Forces on 400V DC Power Architecture for Next-Gen AI Data Centers

    3 Min Read

    Navitas Semiconductor has announced its GaNSense power ICs will power GreatWall’s latest 2.5kW ultra-high power density DC-DC converter for AI data centers.

    The rapid development of AI has imposed higher requirements for computing power on data centers. To accommodate more GPUs for computing, the architecture of 400V independent cabinets will become a new development trend. Module power supplies with small size, high efficiency, and greater independence will free up valuable cabinet space, directly enhance computing power, reduce energy consumption, and contribute to achieving dual-carbon goals.

    Great Wall has developed an industry-leading 2.5kW DC-DC converter in 1/4 brick outline with the world’s highest power density of 92.36W/cm³, up to 8 times higher than the output power of traditional silicon designs. With a record half-load efficiency of 97.9% and a wide input range of 320-420 VDC, this solution achieves the increasingly stringent efficiency guidelines and regulations from Open Compute Project (OCP) and can be widely used in applications from AI data centers, telecommunications, and industrial equipment.

    This ultra-high power density DC-DC converter is powered by Navitas’ GaNSense NV6169. The 650V, 45 mΩ, delivers 50% more power than prior designs, in an industry-standard, low-profile, low-inductance, 8 x 8 mm PQFN package for high-efficiency, high-density power systems. GaNFast power ICs with GaNSense technology feature GaN-industry-first features such as loss-less current sensing and the world’s fastest short-circuit protection, with a ‘detect-to-protect’ speed of only 30 ns, 6x faster than discrete solutions.

    Unlike competing solutions, NV6169 is rated at 650V for nominal operation plus an 800 V peak-rating for robust operation during transient events. As a truly integrated power IC, the GaN gate is fully-protected and the whole device rated at an industry-leading electrostatic-discharge (ESD) specification of 2 kV.

    “With its faster switching frequency and higher efficiency, GaN has become a key factor in unlocking the next generation of power supplies. We are very pleased to collaborate with Navitas, an industry leader in GaN technology, and successfully enable this industry-leading ultra-high-power density and ultra-high efficiency DC-DC converter,” said Michael Zhang, head of DC Product Line at Greatwall Power. “We look forward to deepening our collaboration with Navitas to unlock the application of GaN in more fields, continuously improve power supply efficiency to reduce energy consumption, and accelerate the low-carbon transformation of various industries.”

    “Navitas is deeply honored to cooperate with Great Wall Power to successfully create this ultra-high-power density 2.5 kW DC-DC converter. The profound heritage and innovative strength of Great Wall Power in the power supply field have enabled our GaNFast power ICs to fully demonstrate their advantages,’ said Charles Zha, SVP and GM of Navitas Asia-Pacific. “Navitas firmly believes that continuous cooperation with Great Wall will make GaN technology shine in multiple fields such as AI data centers and telecommunications and promote the industry to develop towards a more efficient and environmentally friendly direction.”

    Original – Navitas Semiconductor

    Comments Off on Navitas Semiconductor and GreatWall Join Forces on 400V DC Power Architecture for Next-Gen AI Data Centers
  • SemiQ Delivers SiC MOSFET Modules for Next-Gen EV Battery Cell Cyclers Integration

    SemiQ Delivers SiC MOSFET Modules for Next-Gen EV Battery Cell Cyclers Integration

    2 Min Read

    SemiQ Inc has begun shipping its SiC MOSFET modules for integration into advanced cell cycling systems used by several of the world’s leading battery manufacturers.

    In lithium-ion batteries, cell cyclers enable the formation of a stable solid electrolyte interphase to enable increased longevity and performance. The systems also enable battery manufacturers to perform battery degradation analysis, temperature and stress testing, and check for defects or performance issues.

    To undertake these tasks, the cyclers need to accurately charge and discharge batteries, with high switching frequencies enabling more precise control of current and voltage to avoid damage from overcharging/discharging. For this function, the MOSFETs need to withstand the thermal stress of repeated power cycling, with failure leading to test disruption and inaccurate data. Conversion efficiency is also vital in minimizing operational costs.

    SemiQ is supplying its GCMX003A120S3B1-N and the GCMX003A120S7B1 QSiC™ 1200 V SiC half-bridge modules for use in 100 kW cyclers (10 x 10 kW cells with parallel connections).

    These high-speed switching MOSFET modules are highly efficient with exceptionally low switching losses, are designed with a reliable body diode, have been tested to over 1350 V and implement a rugged design with easy mounting. Each 10 kW cell will integrate 12 modules, with 120 per 100 kW per cycler.

    Dr. Timothy Han, President at SemiQ said: “Reports show that the electrification of transportation is among the most important steps that can be taken to reach net-zero. For this, the evaluation of battery performance, durability, and efficiency plays a vital role in enabling the development of longer-range, longer-life EV batteries. We’re delighted to be working with one of the world’s leading cell cyclers and this partnership is testament to the ruggedness and efficiency of our SiC technology.”

    Datasheets for the GCMX003A120S3B1-N and GCMX003A120S7B1 modules can be downloaded via the product page, here.

    Original – SemiQ

    Comments Off on SemiQ Delivers SiC MOSFET Modules for Next-Gen EV Battery Cell Cyclers Integration
  • STMicroelectronics and Innoscience Partner to Advance GaN Power Technology and Strengthen Global Supply Chain Resilience

    STMicroelectronics and Innoscience Partner to Advance GaN Power Technology and Strengthen Global Supply Chain Resilience

    2 Min Read

    STMicroelectronics and Innoscience announced the signature of an agreement on GaN technology development and manufacturing, leveraging the strengths of each company to enhance GaN power solutions and supply chain resilience.

    The companies have agreed on a joint development initiative on GaN power technology, to advance the promising future of GaN power for consumer electronics, datacenters, automotive and industrial power systems and many more applications in the coming years. In addition, the agreement allows Innoscience to utilize ST’s front-end manufacturing capacity outside China for its GaN wafers, while ST can leverage Innoscience’s front-end manufacturing capacity in China for its own GaN wafers. The common ambition is for each company to expand their individual offering in GaN with supply chain flexibility and resilience to cover all customers’ requirements in a wide range of applications.

    Marco Cassis, President, Analog, Power & Discrete, MEMS and Sensors of STMicroelectronics declared: “ST and Innoscience are both Integrated Device Manufacturers, and with this agreement we will leverage this model to the benefit of our customers globally. First, ST will be accelerating its roadmap in GaN power technology to complement its silicon and silicon carbide offering. Second, ST will be able to leverage a flexible manufacturing model to serve customers globally.”

    Dr. Weiwei Luo, Chairman and Founder of Innoscience, stated “GaN technology is essential to improve electronics, creating smaller and more efficient systems which save electric power, lower cost, and reduce CO2 Emissions. Innoscience pioneered mass production of 8-inch GaN technology and has shipped over 1 billion GaN devices into multiple markets, and we are very excited to move into strategic collaboration with ST. The joint collaboration between ST and Innoscience will further expand and accelerate the adoption of GaN technology. Together the teams at Innoscience and ST will develop the next generations of GaN technology”.

    GaN power devices leverage fundamental material properties that enable new standards of system performance in power conversion, motion control, and actuation, offering significantly lower losses, which allows for enhanced efficiency, smaller size, and lighter weight, thus reducing the overall solution cost and carbon footprint; these devices are rapidly being adopted in consumer electronics, data center and industrial power supplies, and solar inverters, and are being actively designed into next-generation EV powertrains due to their substantial size and weight reduction benefits.

    Original – STMicroelectronics

    Comments Off on STMicroelectronics and Innoscience Partner to Advance GaN Power Technology and Strengthen Global Supply Chain Resilience
  • Mazda and ROHM Collaborate to Develop Automotive Components Utilizing Next-Generation Semiconductors

    Mazda and ROHM Collaborate to Develop Automotive Components Utilizing Next-Generation Semiconductors

    3 Min Read

    Mazda Motor Corporation and ROHM Co., Ltd. have commenced joint development of automotive components using gallium nitride (GaN) power semiconductors, which are expected to be the next-generation semiconductors.

    Since 2022, Mazda and ROHM have been advancing the joint development of inverters using silicon carbide (SiC) power semiconductors under a collaborative framework for the development and production of electric drive units. Now, they have also embarked on the development of automotive components using GaN power semiconductors, aiming to create innovative automotive components for next-generation electric vehicles.

    GaN is attracting attention as a next-generation material for power semiconductors. Compared to conventional silicon (Si) power semiconductors, GaN can reduce power conversion losses and contribute to the miniaturization of components through high-frequency operation.

    Both companies will collaborate to transform these strengths into a package that considers the entire vehicle, and into solutions that innovate in weight reduction and design. Mazda and ROHM aim to materialize the concept and unveil a demonstration model within FY2025, with practical implementation targeted for FY2027.

    “As the shift towards electrification accelerates in pursuit of carbon neutrality, we are delighted to collaborate with ROHM, which aims to create a sustainable mobility society with its outstanding semiconductor technology and advanced system solution capabilities, in the development and production of automotive components for electric vehicles” said Ichiro Hirose, Director, Senior Managing Executive Officer and CTO of Mazda. “We are excited to work together to create a new value chain that directly connects semiconductor devices and cars. Through collaboration with partners who share our vision, Mazda will continue to deliver products filled with the ‘joy of driving’ that allows customers to truly enjoy driving, even in electric vehicles.”

    “We are very pleased to collaborate with Mazda, which pursues the ‘joy of driving,’ in the development of automotive components for electric vehicles” said Katsumi Azuma, Member of the board and Senior Managing Executive Officer of ROHM. “ROHM’s EcoGaN™, capable of high-frequency operation, and the control IC that maximizes its performance are key to miniaturization and energy-saving. To implement this in society, collaboration with a wide range of companies is essential, and we have established various partnerships for the development and mass production of GaN. By collaborating with Mazda, which aims to create ‘cars that coexist sustainably with the earth and society,’ we will understand the requirements for GaN from the perspective of application and final product development, contributing to the spread of GaN power semiconductors and the creation of a sustainable mobility society.”

    Original – ROHM

    Comments Off on Mazda and ROHM Collaborate to Develop Automotive Components Utilizing Next-Generation Semiconductors
  • Nexperia Expands GaN FET Portfolio to Cover Wider Power Ranges in Low- and High-Voltage Applications

    Nexperia Expands GaN FET Portfolio to Cover Wider Power Ranges in Low- and High-Voltage Applications

    2 Min Read

    Nexperia announced the addition of 12 new devices to its continuously expanding e-mode GaN FET portfolio. This latest release is intended to address the growing demand for higher efficiency and more compact systems. The new low and high-voltage e-mode GaN FETs address multiple markets including consumer, industrial, server/computing and telecommunications, with a particular focus on supporting high-voltage, low to mid-power and low-voltage, low to high-power use cases.

    Since introducing e-mode GaN FETs in 2023, Nexperia remains the only supplier in the industry to offer both cascode or d-mode and e-mode devices, providing designers with convenience when faced with variable challenges during the design process.

    The latest additions to Nexperia’s e-mode GaN FET portfolio include new low voltage 40 V bi-directional devices (RDSon<12 mΩ) to support overvoltage protection (OVP), load switching, and low-voltage applications including battery management systems (BMS) in mobile devices, and laptop computers.

    Also featuring in this release are 100 V and 150 V devices (RDSon<7 mΩ) suitable for synchronous rectification (SR) power supplies in consumer devices, DC-DC converters in datacomms and telecoms equipment, photovoltaic micro-inverters, Class-D audio amplifiers and motor control systems in e-bikes, forklifts and light electric vehicles (LEVs). The new higher voltage range features 700 V devices (RDSon>140 mΩ) to support LED drivers and power factor correction (PFC) applications, and 650 V devices (RDSon>350 mΩ) suitable for use in AC/DC converters.

    The superior switching performance of Nexperia’s e-mode GaN FET technology is due to their exceptionally low QG and QOSS values. These new devices offer industry-leading figures of merit (FOM), making them a top choice for high-efficiency power solutions.

    Original – Nexperia

    Comments Off on Nexperia Expands GaN FET Portfolio to Cover Wider Power Ranges in Low- and High-Voltage Applications
  • Nexperia Introduced 1200V SiC MOSFETs in Top-Side Cooled X.PACK for Superior Thermal Performance

    Nexperia Introduced 1200V SiC MOSFETs in Top-Side Cooled X.PACK for Superior Thermal Performance

    3 Min Read

    Nexperia introduces a range of highly efficient and robust industrial grade 1200 V silicon carbide (SiC) MOSFETs with industry leading temperature stability in innovative surface-mount (SMD) top-side cooled packaging technology called X.PAK. This package, with its compact form factor of 14 mm x 18.5 mm, combines the assembly benefits of SMD with the cooling efficiency of through-hole technology, ensuring optimal heat dissipation.

    This release addresses the growing demand from a broad range of high power (industrial) applications for discrete SiC MOSFETs that harness the advantages of top-side cooling to deliver exceptional thermal performance. These switches are ideal for industrial applications such as battery energy storage systems (BESS), photovoltaic inverters, motor drives, and uninterruptible Power Supplies (UPS). Additionally, they are well-suited for electric vehicle charging infrastructure, including charge piles.

    The X.PAK package further enhances the thermal performance of Nexperia’s SiC MOSFETs by reducing the negative impacts of heat dissipation via the PCB. Furthermore, Nexperia’s X.PAK package enables low inductance for surface mount components and supports automated board assembly.

    The new X.PAK packaged devices deliver class-leading figures-of-merit (FoM) known from Nexperia SiC MOSFETs, with RDS(on) being a particularly critical parameter due to its impact on conduction power losses. However, many manufacturers concentrate on the nominal value of this parameter and neglect the fact that it can increase by more than 100% as device operating temperatures rise, resulting in significant conduction losses. Nexperia SiC MOSFETs, on the other hand, offer industry-leading temperature stability, with the nominal value of RDS(on) increasing by only 38% over an operating temperature range from 25 °C to 175 °C.

    “The introduction of our SiC MOSFETs in X.PAK packaging marks a significant advancement in thermal management and power density for high-power applications,” said Katrin Feurle, Senior Director and Head of SiC Discretes & Modules at Nexperia. “This new top-side cooled product option builds on our successful launches of discrete SiC MOSFETs in TO-247 and SMD D2PAK-7 packages. It underscores Nexperia’s commitment to providing our customers with the most advanced and flexible portfolio to meet their evolving design needs.”

    The initial portfolio includes products with RDS(on) values of 30, 40, 60 mΩ (NSF030120T2A0NSF040120T2A1NSF060120T2A0), a part with 17 mΩ will be released in April 2025. An automotive qualified SiC MOSFETs portfolio in X.PAK packaging will follow later in 2025, as well as further RDson classes like 80 mΩ.

    Original – Nexperia

    Comments Off on Nexperia Introduced 1200V SiC MOSFETs in Top-Side Cooled X.PACK for Superior Thermal Performance
  • EPC Sets New Benchmark for 100V GaN Power Transistors with Latest Innovation

    EPC Sets New Benchmark for 100V GaN Power Transistors with Latest Innovation

    2 Min Read

    Efficient Power Conversion introduced the EPC2367a next-generation 100 V eGaN® FET that delivers superior performance, higher efficiency, and lower system costs for power conversion applications.

    Designed for 48 V intermediate voltage bus architectures, the EPC2367 significantly advances the performance of power systems by reducing power loss, increasing efficiency, and enabling more compact and cost-effective designs. This new device sets a benchmark in performance compared to both previous-generation GaN and traditional silicon MOSFET solutions.

    Key Advantages of the EPC2367

    • Ultra-Low On-Resistance (RDS(on)): 1.2 mΩ, a ~ 30% improvement over previous generation best-in-class devices
    • Smaller Footprint: 3.3 mm × 3.3 mm QFN package, reducing PCB space and enhancing thermal performance
    • Best-in-Class Switching Figures of Merit (FoM): EPC2367 outperforms competitors in hard and soft-switching applications, delivering superior efficiency and lower power losses
    • Enhanced Thermal Performance: Operates cooler under load, improving system reliability and enabling higher power densities
    • Outstanding Temperature Cycling Reliability: 4× the thermal cycling capability compared to previous GaN generations, ensuring robust long-term operation

    Superior In-Circuit Performance

    The EPC2367 has been rigorously tested in hard and soft-switching applications. Performance results demonstrate higher efficiency across the full power range, with significant power loss reductions. In a 1 MHz, 1.25 kW system, EPC2367 reduces power losses while achieving 1.25× the output power compared to previous GaN and Si MOSFET alternatives.

    The EPC2367 advances GaN technology with ultra-low on-resistance and superior thermal cycling, enabling engineers to boost efficiency and power density in AI servers, robotics, and automotive systems, said Alex Lidow, EPC CEO and co-founder.

    The EPC90164 development board is a half bridge featuring the EPC2367 GaN FET. It is designed for 80 V maximum operating voltage and 35 A maximum output current. The purpose of this board is to simplify the evaluation process of power systems designers to speed their product’s time to market. This 2” x 2” (50.8 mm x 50.8 mm) board is designed for optimal switching performance and contains all critical components for easy evaluation.

    Original – Efficient Power Conversion

    Comments Off on EPC Sets New Benchmark for 100V GaN Power Transistors with Latest Innovation
  • Navitas Achieves 80 Plus Ruby Certification for AI Data Center Power Efficiency Leadership

    Navitas Achieves 80 Plus Ruby Certification for AI Data Center Power Efficiency Leadership

    3 Min Read

    Navitas Semiconductor has announced that its portfolio of 3.2kW, 4.5kW, and 8.5 kW AI data center power supply unit (PSU) designs exceed the new 80 PLUS ‘Ruby’ certification, focused on the highest level of efficiency for redundant server data center PSUs.

    The 80 PLUS certification program assesses and certifies the energy efficiency of internal PSUs in computers and servers. The ‘Ruby’ certification was announced in January 2025 by 80 PLUS’s administrating body, CLEAResult, following its endorsement by the Green Grid consortium.

    ‘Ruby’ is the most rigorous PSU efficiency standard since the ‘Titanium’ certification was released 14 years ago. In comparison, Ruby sets an additional 1% system efficiency across all load conditions, except at 50% load (which requires a 0.5% increase), to achieve a new benchmark of 96.5% efficiency. 

    This new standard offers the industry a clear path to enhanced energy efficiency, helping data centers address the evolving needs of cloud storage, commercial sectors, and the increasing pressure on the grid from AI computing. For example, every Ruby-certified 3.2 kW CRPS185 PSU can save up to 420 kilowatt-hours during a 3-year lifetime. That is the equivalent of over 400 kg of CO2 emissions.

    Navitas exceeds both Ruby and Titanium certifications on their portfolio of AI data center PSU reference designs, ranging from 3.2 kW to 8.5 kW, and are powered by high-power GaNSafe™ ICs and GeneSiC™ Gen 3 ‘Fast’ SiC MOSFETs.

    Navitas is the established leader in AI data center solutions enabled by GaN and SiC technology. In August 2023, they introduced a high-speed, high-efficiency 3.2 kW CRPS, achieving a 40% smaller size than best-in-class, legacy silicon solutions for power-hungry AI and Edge computing. This was followed by the world’s highest power density 4.5 kW CRPS, achieving a ground-breaking 137 W/in3, and efficiency of over 97%.

    In November 2024, Navitas released the world’s first 8.5 kW AI data center power supply powered by GaN and SiC that could meet 98% efficiency, complying with the Open Compute Project (OCP) and Open Rack v3 (ORv3) specifications. Additionally, Navitas created IntelliWeave, an innovative patented new digital control technique, that when combined with high-power GaNSafe and Gen 3-Fast SiC MOSFETs, enables PFC peak efficiencies to 99.3% and reduces power losses by 30% reduction compared to existing solutions.

    “Compared with Titanium, Ruby cuts the allowable PSU losses significantly and will be critical in enabling the data center industry to reduce its carbon footprint and cut operational costs,” said  Gene Sheridan, CEO and co-founder of Navitas. “With the industry set to consume 1,000 TWh annually by next year1, every percentage point improvement in efficiency represents a reduction of 10 TWh, or approximately 3.5 million tons of CO22. Advances in our GaNFast and GeneSiC products enable these targets to be met and significantly exceeded.”

    Navitas’ AI Power Roadmap and 80 PLUS Ruby-compliant demos can be viewed at the ‘Planet Navitas’ booth #1107 during the APEC 2025 conference, which takes place at Atlanta’s Georgia World Congress Center from March 16 to 20.

    Original – Navitas Semiconductor

    Comments Off on Navitas Achieves 80 Plus Ruby Certification for AI Data Center Power Efficiency Leadership
  • onsemi Unveils SiC-Based Intelligent Power Modules to Boost Efficiency and Cut System Costs

    onsemi Unveils SiC-Based Intelligent Power Modules to Boost Efficiency and Cut System Costs

    4 Min Read

    onsemi introduced the first generation of its 1200V silicon carbide (SiC) metal oxide semiconductor field-effect transistor (MOSFET) based SPM 31 intelligent power modules (IPMs). onsemi EliteSiC SPM 31 IPMs deliver the highest energy efficiency and power density in the smallest form factor compared to using Field Stop 7 IGBT technology, resulting in lower total system cost than any other leading solution on the market.

    Their improved thermal performance, reduced power losses and ability to support fast switching speeds makes these IPMs ideally suited for three-phase inverter drive applications such as electronically commutated (EC) fans in AI data centers, heat pumps, commercial HVAC systems, servo motors, robotics, variable frequency drives (VFDs), and industrial pumps and fans.

    The EliteSiC SPM 31 IPMs offer several current ratings from 40A to 70A. Complemented by onsemi’s IGBT SPM 31 IPM portfolio, covering low currents from 15A to 35A, onsemi now provides the industry’s broadest range of scalable and flexible integrated power module solutions in a small package. 

    In 2023, operations of residential and commercial buildings accounted for 27.6% of U.S. end-use energy consumption. As electrification and AI adoption grow, particularly with the construction of more AI data centers increasing energy demands, the need to reduce the energy consumption of applications in this sector is becoming more critical. Power semiconductors capable of efficiently converting electric power are the key in this transition to a low-carbon-emissions world.

    With the number and size of data centers growing, the demand for EC fans is expected to rise. These cooling fans maintain the ideal operating environment for all equipment in a data center and are essential for accurate, error-free data transmission. The SiC IPM ensures the EC fan operates reliably and at its highest efficiency.

    Like many other industrial applications such as compressor drives and pumps, EC fans require higher power density and efficiency than existing larger IGBT solutions. By switching to EliteSiC SPM 31 IPMs, customers can benefit from a smaller footprint, higher performance, and a simplified design due to high integration, resulting in shortened development time and lower total system cost in addition to reduced GHG emissions. For example, compared to a system solution that uses a current IGBT power integrated module (PIM) with power losses of 500W at 70% load, implementing highly efficient EliteSiC SPM 31 IPMs could reduce the annual energy consumption and cost per EC fan by 52%.

    The fully integrated EliteSiC SPM 31 IPM consists of an independent high side gate driver, low voltage integrated circuit (LVIC), six EliteSiC MOSFETs and a temperature sensor (voltage temperature sensor (VTS) or thermistor). The module is based on the industry-leading M3 SiC technology that shrinks die size and is optimized for hard-switching applications with improved short-circuit withstand time (SCWT) performance when used in the SPM 31 package, making them suitable for inverter motor drives for industrial use. The MOSFETs are configured in a three-phase bridge with separate source connections for the lower legs for maximum flexibility in the choice of control algorithm.

    In addition, the EliteSiC SPM 31 IPMs include the following benefits:

    • Low loss, short-circuit-rated M3 EliteSiC MOSFETs to prevent catastrophic equipment and component failures such as electric shock or fire.
    • Built-in under-voltage protection (UVP) to protect against damage to the device when voltage is low.
    • As the peer-to-peer product of FS7 IGBT SPM 31, customers can choose between various current ratings while using the same PCB board.
    • UL certified to meet national and international safety standards
    • Single-grounded power supply offering better safety, equipment protection and noise reduction.
    • Simplified design and reduced size of customer boards due to
      • Included controls for gate drivers and protections
      • Built-in bootstrap diodes (BSDs) and resistors (BSRs)
      • Internal boost diodes provided for high side gate boost drive
      • Integrated temperature sensor (VTS output by LVIC and/or thermistor)
      • Built-in high-speed high-voltage integrated circuit

    Original – onsemi

    Comments Off on onsemi Unveils SiC-Based Intelligent Power Modules to Boost Efficiency and Cut System Costs
  • Texas Instruments Introduced Advanced Power Management Chips to Enhance Efficiency and Protection in Data Centers

    Texas Instruments Introduced Advanced Power Management Chips to Enhance Efficiency and Protection in Data Centers

    3 Min Read

    Texas Instruments debuted new power-management chips to support the rapidly growing power needs of modern data centers. As the adoption of high-performance computing and artificial intelligence (AI) increases, data centers require more power-dense and efficient solutions.

    TI’s new TPS1685 is the industry’s first 48V integrated hot-swap eFuse with power-path protection to support data center hardware and processing needs. To simplify data center design, TI also introduced a new family of integrated GaN power stages, the LMG3650R035, LMG3650R025and LMG3650R070, in industry-standard TOLL packaging. TI is showcasing these devices at the 2025 Applied Power Electronics Conference (APEC), March 16-20, in Atlanta, Georgia.

    “With data centers increasingly demanding more energy, powering the world’s digital infrastructure begins with smarter, more efficient semiconductors,” said Robert Taylor, general manager, Industrial Power Design Services. “While advanced chips drive AI’s computational power, analog semiconductors are key to maximizing energy efficiency. Our latest power-management innovations are enabling data centers to reduce their environmental footprint while supporting the growing needs of our digital world.”

    As power demands surge, data center designers are shifting to 48V power architectures for enhanced efficiency and scalability to support components such as CPUs, graphics processing units and AI hardware accelerators. TI’s 48V stackable integrated hot-swap eFuse with power-path protection empowers designers to tackle high-power (>6kW) processing needs with a scalable device that simplifies design and reduces solution size by half compared to existing hot-swap controllers in the market.

    To learn more about designing with the TPS1685, read the technical article, “Powering Modern AI Data Centers with an Integrated 48V Hot-Swap eFuse Device.”

    In addition, TI introduced a new family of integrated GaN power stages. The LMG3650R035LMG3650R070 and LMG3650R025 leverage the benefits of TI GaN in an industry-standard TOLL package, allowing designers to take advantage of TI GaN efficiency without costly and time-consuming redesigns.

    The new power stages integrate a high-performance gate driver with a 650V GaN field-effect transistor (FET) while achieving high efficiency (>98%) and high-power density (>100W/in3). They also integrate advanced protection features including over-current protection, short-circuit protection and over-temperature protection. This is especially important for AC/DC applications like server power, where designers are challenged to push more power into smaller spaces.

    At APEC 2025, TI will showcases power solutions that enable designers to reimagine new levels of power density and efficiency, including:

    • Dell’s 1.8kW server power-supply unit (PSU) with TI GaN power stages: Dell’s first high-efficiency 12V PSU design uses a TI integrated GaN power stage. The PSU features a GaN FET with built-in driver, protection and temperature reporting to achieve over 96% system-level efficiency.
    • Vertiv’s 5.5kW server PSU: Part of Vertiv’s PowerDirect Rack DC power system, the latest PSU from Vertiv is powered by TI GaN technology to deliver up to 132kW per rack.
    • Greatwall’s 8kW PSU: To help designers increase power density, Greatwall and TI co-developed an 8kW open-rack PSU using TI GaN technology and TI C2000™ real-time microcontrollers.

    Throughout the show, TI power experts will lead 27 industry and technical sessions to address power-management design challenges. Visit TI in the Georgia World Congress Center, Booth No. 1213. The full schedule is available at ti.com/APEC.

    Original – Texas Instruments

    Comments Off on Texas Instruments Introduced Advanced Power Management Chips to Enhance Efficiency and Protection in Data Centers