• Qorvo Unveiled Automotive-Qualified SiC FET in a Compact D2PAK-7L Package

    Qorvo Unveiled Automotive-Qualified SiC FET in a Compact D2PAK-7L Package

    2 Min Read

    Qorvo® unveiled an automotive-qualified silicon carbide (SiC) field effect transistor (FET) offering an industry-best 9mΩ RDS(on) in a compact D2PAK-7L package. This 750V SiC FET is the first in a new family of pin-compatible SiC FETs from Qorvo with RDS(on) options up to 60mΩ, making them well suited for electric vehicle (EV) applications, including on-board chargers, DC/DC converters and positive temperature coefficient (PTC) heater modules.

    The UJ4SC075009B7S features a 9mΩ typical RDS(on) at 25°C needed for reducing conduction losses and maximizing efficiency in high voltage, multi-kilowatt automotive applications. Its small, surface-mount package enables automated assembly flows and reduces customer manufacturing costs. This new 750V family complements Qorvo’s existing 1200V and 1700V automotive SiC FETs in D2PAK packaging to form a complete portfolio addressing EV applications that span 400V and 800V battery architectures.

    Ramanan Natarajan, director of Product Line Marketing for Qorvo’s Power Products, said, “The launch of this new family of SiC FETs demonstrates our commitment to providing EV powertrain designers the most advanced and efficient solutions for their unique automotive power challenges.”

    These fourth generation SiC FETs leverage Qorvo’s unique cascode circuit configuration, in which a SiC JFET is co-packaged with a Si MOSFET to produce a device with the efficiency advantages of wide bandgap switch technology and the simpler gate drive of silicon MOSFETs. Efficiency in SiC FETs is dependent on conduction losses, and Qorvo’s cascode/JFET approach enables reduced conduction losses through industry-best RDS(on) and body diode reverse voltage drop.

    The key features of the UJ4SC075009B7S include:

    • Threshold voltage VG(th): 4.5V (typical) allowing 0 to 15V drive
    • Low body diode VFSD: 1.1V
    • Maximum operating temperature: 175°C
    • Excellent reverse recovery: Qrr = 338 nC
    • Low gate charge: QG = 75 nC
    • Automotive Electronics Council (AEC) Q101-qualified

    Original – Qorvo

    Comments Off on Qorvo Unveiled Automotive-Qualified SiC FET in a Compact D2PAK-7L Package
  • Mitsubishi Electric Announced Release of Six New J3-Series Power Semiconductor Modules

    Mitsubishi Electric Announced Release of Six New J3-Series Power Semiconductor Modules

    2 Min Read

    Mitsubishi Electric Corporation announced the coming release of six new J3-Series power semiconductor modules for various electric vehicles (xEVs), featuring either a silicon carbide metal-oxide semiconductor field-effect transistor (SiC-MOSFET) or a RC-IGBT (Si), with compact designs and scalability for use in the inverters of electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs). All six J3-Series products will be available for sample shipments from March 25.

    The new power modules will be exhibited at the 38th Electronics R&D, Manufacturing and Packaging Technology Expo (NEPCON JAPAN 2024) from January 24 to 26 at Tokyo Big Sight, Japan, as well as other exhibitions in North America, Europe, China and additional locations.

    As power semiconductors capable of efficiently converting electricity expand and diversify in response to decarbonization initiatives, the demand is increasing for SiC power semiconductors offering significantly reduced power loss. In the xEV sector, power semiconductor modules are used widely in power conversion devices such as inverters for xEV drive motors.

    In addition to extending the cruising range of xEVs, compact, high-power, high-efficiency modules are needed to further downsize batteries and inverters. But due to the high safety standards set for xEVs, power semiconductors used in drive motors must be more reliable than those used in general industrial applications.

    Development of these SiC products was partially supported by Japan’s New Energy and Industrial Technology Development Organization (NEDO).

    Original – Mitsubishi Electric

    Comments Off on Mitsubishi Electric Announced Release of Six New J3-Series Power Semiconductor Modules
  • Infineon Expands and Extends the Existing SiC Wafer Supply Agreement with Wolfspeed

    Infineon Expands and Extends the Existing SiC Wafer Supply Agreement with Wolfspeed

    2 Min Read

    Infineon Technologies AG and Wolfspeed, Inc. announced the expansion and extension of their existing long-term 150mm silicon carbide wafer supply agreement, originally signed in February 2018. The extended partnership includes a multi-year capacity reservation agreement.

    It contributes to Infineon’s general supply chain stability, also with regard to the growing demand for silicon carbide semiconductor products for automotive, solar and EV applications and energy storage systems. 

    “As the demand for silicon carbide devices continues to increase, we are following a multi-source strategy to secure access to a high-quality, global and long-term supply base of 150mm and 200mm SiC wafers. Our prolonged partnership with Wolfspeed further strengthens Infineon’s supply chain resilience for the coming years,” said Jochen Hanebeck, CEO of Infineon Technologies. “We have been working with Wolfspeed for more than 20 years to bring the promise of silicon carbide to the automotive, industrial and energy markets, and to help customers leverage this energy-efficient technology to foster decarbonization.”

    The adoption of silicon carbide-based power solutions is rapidly growing across multiple markets. Silicon carbide solutions enable smaller, lighter and more cost-effective designs, converting energy more efficiently to unlock new clean energy applications. To better support these growing markets, Infineon is continuously diversifying its supplier base to secure access to high-quality silicon carbide substrates.

    “Wolfspeed is the world’s leader in silicon carbide production. We are the catalyst in the industry transition to silicon carbide, providing high-quality materials to key customers like Infineon, a leading supplier in both the automotive and industrial markets, while also scaling our capacity footprint,” said Wolfspeed president and CEO Gregg Lowe. “Industry estimates indicate demand for silicon carbide devices, as well as the supporting material, will grow substantially through 2030, representing a $20 billion annual opportunity. We are very pleased to continue our partnership with Infineon and to serve as a major supplier of silicon carbide wafers in the years ahead.”

    Original – Infineon Technologies

    Comments Off on Infineon Expands and Extends the Existing SiC Wafer Supply Agreement with Wolfspeed
  • Transphorm Adds Two New SuperGaN Devices in a 4-lead TO-247 Package

    Transphorm Adds Two New SuperGaN Devices in a 4-lead TO-247 Package

    2 Min Read

    Transphorm, Inc. announced availability of two new SuperGaN® devices in a 4-lead TO-247 package (TO-247-4L). The new TP65H035G4YS and TP65H050G4YS FETs offer a 35 mOhm and 50 mOhm on resistance respectively, complete with a kelvin-source terminal that gives customers versatile switching capabilities with even lower energy losses.

    The new products will run on Transphorm’s well-established GaN-on-Silicon substrate manufacturing process that is cost-effective, reliable, and well-suited for high volume manufacturing on silicon production lines. The 50 mOhm TP65H050G4YS FET is currently available while the 35mOhm TP65H035G4YS FET is sampling and slated for release in calendar Q1’2024.

    Transphorm’s 4-lead SuperGaN devices can serve as an original design-in option or as a drop-in replacement for 4-lead silicon and SiC solutions supporting power supplies at 1 kilowatt and up in a wide range of data center, renewables, and broad industrial applications. As noted, the 4-lead configuration offers flexibility to users for further improved switching performance.

    In a hard-switched synchronous boost converter, the 35 mOhm SuperGaN 4-lead FET reduced losses by 15 percent at 50 kilohertz (kHz) and by 27 percent at 100 kHz when compared to a SiC MOSFET device with a comparable on resistance.

    Transphorm’s SuperGaN FETs are known for delivering differentiating advantages such as:

    • Industry-leading robustness with a +/- 20 V gate threshold and a 4 V noise immunity.
    • Easier designability by reducing the amount of circuitry required around the device.
    • Easier drivability as FETs can pair with well-known, off-the shelf drivers common to silicon devices.

    The TO-247-4L devices offer the same robustness, designability, and drivability with the following core specifications:

    Part NumberVds (V) minRds(on) (mΩ) typVth (V) typId (25°C) (A) maxPackage Variation
    TP65H035G4YS650353.646.5Source
    TP65H050G4YS65050435Source

    “We continue to expand our product portfolio to bring to market GaN FETs that help customers leverage our SuperGaN platform performance advantages in whatever design requirement they may have,” said Philip Zuk, Senior Vice President, Business Development and Marketing, Transphorm.

    “The four-lead TO-247 package provides flexibility for designers and customers seeking even greater power system loss reductions with little to no design modifications on silicon or silicon carbide systems. It’s an important addition to our product line as we ramp into higher power applications.”

    Original – Transphorm

    Comments Off on Transphorm Adds Two New SuperGaN Devices in a 4-lead TO-247 Package
  • SemiQ to Show Its Latest SiC Portfolio at the APEC in California

    SemiQ to Show Its Latest SiC Portfolio at the APEC in California

    2 Min Read

    SemiQ will be exhibiting its latest portfolio of advanced silicon carbide (SiC) modules at the Applied Power Electronics Conference (APEC) in Long Beach, CA February 25-29, 2024.

    Visitors to SemiQ’s booth #2245 will have the first opportunity to explore the latest QSiC™ 1200V SiC modules. These modules are designed to operate reliably in challenging conditions and enable high-performance, high-density implementation while minimizing both dynamic and static losses. Crafted from high-performance ceramics, the modules are available in SOT-227, half-bridge and full-bridge options.  

    The new QSiC MOSFET modules support a variety of innovative automotive and industrial power applications where efficiency, power density and performance are critical design criteria. These include EV charging, on-board chargers (OBCs), DC-DC converters, E-compressors, fuel cell converters, medical power supplies, energy storage systems, solar and wind energy systems, data center power supplies and UPS/PFC circuits.

    “We’re excited to showcase our new family of QSiC™ 1200V MOSFET modules at APEC and look forward to empowering engineers across the renewable energy, automotive, medical, and industrial sectors to build robust systems,” said Dr. Timothy Han, President at SemiQ.

    “This family is a testament to SemiQ’s dedication to excellence in semiconductor technology. Our power modules stand out not just for their high performance, but also for the rigorous testing that ensures reliability. All modules have undergone testing exceeding 1350V. From gate burn-in testing to stress tests like HTRB and H3TRB, we prioritize stability and quality.”

    Held annually, APEC is a three-day technology event that focuses on the practical and applied aspects of the power electronics business. The conference provides ample opportunities for networking, offering a range of activities from technical and industry sessions to social events and exhibitor presentations. APEC caters to a diverse group of professionals in the field of power electronics, ranging from designers of power supplies, DC-DC converters, and motor drives to equipment OEMs that use power supplies, as well as manufacturers and suppliers.

    Additionally, professional education seminars are available for attendees who wish to stay updated on the latest industry trends. These seminars offer in-depth discussions of important and complex power electronics topics that can vary from introductory to advanced in technical level.

    Original – SemiQ

    Comments Off on SemiQ to Show Its Latest SiC Portfolio at the APEC in California
  • OMRON Enables One of Japan’s Smallest and Lightest V2X Charging Systems Using Infineon's GaN Solutions

    OMRON Enables One of Japan’s Smallest and Lightest V2X Charging Systems Using Infineon’s GaN Solutions

    3 Min Read

    Infineon Technologies AG announced its partnership with OMRON Social Solutions Co. Ltd., a pioneering company in social systems technology. Combining Infineon’s first-class gallium nitride (GaN) based power solutions with the innovative circuit topology and control technology of OMRON now enables one of Japan’s smallest and lightest vehicle-to-everything (V2X) charging systems by OMRON Social Solutions.

    This partnership will further drive innovation towards wide bandgap materials in power supplies, help to accelerate the transition to renewable energies, a smarter grid, and the adoption of electric vehicles, while fostering decarbonization and digitalization. 

    For the V2X system, KPEP-A series, Infineon’s CoolGaN™ technology is utilized combined with a unique control technology. OMRON Social Solutions has upgraded its EV charger and discharger system now allowing for bi-directional charging and discharging paths between renewable energy sources, the grid, and EV batteries.

    The KPEP-A series is one of the smallest and lightest multi-V2X systems in Japan with a 60% reduction in size and weight compared to similar conventional charger and discharger designs yet providing a charging capability of 6 kW. With the integration of Infineon’s CoolGaN solution, the power efficiency of the V2X systems has increased by more than 10% at light load and around 4% at rated load. By improving efficiency and a reduction in size and weight, the new system allows easier installation and maintenance while enabling more elegant designs and offering a wider range of options for installation locations.

    “We are thrilled to partner with OMRON Social Solutions as our CoolGaN based solutions directly contribute to speed up the transition to renewable energies which reduces CO2 emissions and drives decarbonization,” said Adam White, Division President Power & Sensor Systems at Infineon. “It will also make charging of electric vehicles easier and more convenient for consumers, helping to overcome one of the biggest barriers to EV adoption.”

    Atsushi Sasawaki, Managing Executive Officer and Senior General Manager for Energy Solutions Business of OMRON Social Solutions said: “Having access to a broad portfolio of WBG solutions significantly increases the functionality, performance and quality of our products. With Infineon, we get the best-in-class application know-how for creating new and improved charging and discharging systems, providing a high level of satisfaction for our customers and end-users. We look forward to further developing GaN- and SiC-based power solutions together with Infineon to help drive renewable energy and electric vehicles.”

    Wide bandgap semiconductors made of silicon carbide and gallium nitride differ significantly from conventional semiconductors as they allow for greater power efficiency, smaller size, lighter weight, and lower overall cost. Infineon offers the broadest product and technology portfolio including silicon, silicon carbide and gallium-nitride-based devices.

    As the leading power supplier with more than two decades of heritage in SiC and GaN technology development, Infineon caters to the need for smarter, more efficient energy generation, transmission, and consumption.

    Original – Infineon Technologies

    Comments Off on OMRON Enables One of Japan’s Smallest and Lightest V2X Charging Systems Using Infineon’s GaN Solutions
  • Renesas Electronics Adds Transphorm's GaN to Its Power Portfolio

    Renesas Electronics Adds Transphorm’s GaN to Its Power Portfolio

    3 Min Read

    Renesas Electronics Corporation and Transphorm, Inc. announced that they have entered into a definitive agreement pursuant to which a subsidiary of Renesas will acquire all outstanding shares of Transphorm’s common stock for $5.10 per share in cash, representing a premium of approximately 35% to Transphorm’s closing price on January 10, 2024, a premium of approximately 56% to the volume weighted average price over the last twelve months and a premium of approximately 78% to the volume weighted average price over the last six months.

    The transaction values Transphorm at approximately $339 million. The acquisition will provide Renesas with in-house GaN technology, a key next-generation material for power semiconductors, expanding its reach into fast-growing markets such as EVs, computing (data centers, AI, infrastructure), renewable energy, industrial power conversion and fast chargers/adapters.

    Demand for highly efficient power systems is increasing as building blocks for carbon neutrality. To address this trend, an industry-wide transition toward wide bandgap (“WBG”) materials, represented by silicon carbide (“SiC”) and GaN, is also being seen. These advanced materials allow a broader range of voltage and switching frequency than conventional silicon-based devices. To build on this momentum, Renesas has announced the establishment of an in-house SiC production line, supported by a 10 year SiC wafer supply agreement.

    Renesas now aims to further expand its WBG portfolio with Transphorm’s expertise in GaN, an emerging material that enables higher switching frequency, lower power losses, and smaller form factors. These benefits empower customers’ systems with greater efficiency, smaller and lighter composition, and lower overall cost.

    As such, demand for GaN is predicted to grow by more than 50 percent annually, according to an industry study. Renesas will implement Transphorm’s auto-qualified GaN technology to develop new enhanced power solution offerings, such as X-in-1 powertrain solutions for EVs, along with computing, energy, industrial and consumer applications.

    “Transphorm is a company uniquely led by a seasoned team rooted in GaN power and with origins from the University of California at Santa Barbara,” said Hidetoshi Shibata, CEO of Renesas. “The addition of Transphorm’s GaN technology builds on our momentum in IGBT and SiC. It will fuel and expand our power portfolio as a key pillar of growth, offering our customers the full ability to choose their optimal power solutions.”

    “Combined with Renesas’ world-wide footprint, breadth of solution offerings and customer relationships, we are excited to pave the way for industry-wide adoption of WBG materials and set the stage for significant growth.

    This transaction will also allow us to offer further expanded services to our customers and deliver significant immediate cash value to our stockholders,” said Dr. Primit Parikh, Co-founder, President and CEO of Transphorm and Dr. Umesh Mishra, Co-founder and CTO of Transphorm. “Additionally, it will provide a strong platform for our exceptional team to further Transphorm’s leading GaN technology and products.”

    The board of directors of Transphorm has unanimously approved the definitive agreement with respect to the transaction and recommended that Transphorm stockholders adopt such definitive agreement and approve the merger. Concurrently with the execution of the definitive agreement, KKR Phorm Investors L.P., which holds approximately 38.6% of Transphorm’s outstanding common stock, has entered into a customary voting agreement with Renesas to vote in favor of the transaction.

    The transaction is expected to close in the second half of calendar year 2024, subject to Transphorm stockholder approval, required regulatory clearances and the satisfaction of other customary closing conditions.

    Original – Renesas Electronics

    Comments Off on Renesas Electronics Adds Transphorm’s GaN to Its Power Portfolio
  • SK Siltron CSS to Provide Infineon Technologies with 150-millimeter SiC Wafers

    SK Siltron CSS to Provide Infineon Technologies with 150-millimeter SiC Wafers

    1 Min Read

    Infineon Technologies AG has formalized an agreement with silicon carbide (SiC) supplier SK Siltron CSS. Under the agreement, SK Siltron CSS will provide Infineon with competitive and high-quality 150-millimeter SiC wafers, supporting the production of SiC semiconductors. In a subsequent phase, SK Siltron CSS will play an important role in assisting Infineon’s transition to a 200-millimeter wafer diameter.

    “For Infineon, supply chain resiliency is about implementing a multi-supplier strategy and thriving in times of adversity to create new growth opportunities and drive decarbonization,” said Angelique van der Burg, Chief Procurement Officer at Infineon. “We are excited to partner with SK Siltron CSS to serve the growing SiC demand of our broad customer base with new energy-efficient and top-quality products, matching the highest standards in the SiC market.”

    “With decades of experience in silicon carbide materials and manufacturing, we bring unparalleled knowledge to our sustainably manufactured compound semiconductor solutions. This wealth of experience is a cornerstone in our partnership with Infineon,” said Jianwei Dong, Ph.D., CEO of SK Siltron CSS. “This long-term supply agreement marks the synergy of our extensive expertise and Infineon’s vision to make life easier, safer and greener for generations to come.”

    Original – Infineon Technologies

    Comments Off on SK Siltron CSS to Provide Infineon Technologies with 150-millimeter SiC Wafers
  • Navitas Semiconductor Appoints Janet Chou as EVP, CFO, and Treasurer

    Navitas Semiconductor Appoints Janet Chou as EVP, CFO, and Treasurer

    2 Min Read

    Navitas Semiconductor announced the appointment of Janet Chou as Executive Vice President, Chief Financial Officer and Treasurer, effective upon the filing of Navitas’ 2023 annual report on Form 10‑K expected at the end of February.

    Chou will report to Gene Sheridan, President and CEO, and will replace Ron Shelton, Senior Vice President, CFO and Treasurer, who announced his intention to pursue other opportunities effective March 15, 2024. Following the Form 10-K filing, Shelton will provide advice and assistance to Sheridan and transition assistance and support to Chou.

    “Under Ron’s financial leadership, we have executed a significant and successful capital raise, built a strong investor and analyst base, and completed three strategic acquisitions—all while delivering predictable and impressive financial results,” said Sheridan. “While I wish Ron all the best in his next career move, I am also very excited to welcome Janet Chou as our new CFO. I am confident her deep experience in financial leadership at global, multi-$B public semiconductor leaders will be invaluable as we scale Navitas to new levels in coming years.”

    Chou was previously Vice President and CFO of Global Operations for Western Digital Corporation, a $12 billion Nasdaq-listed developer, manufacturer, and provider of data storage devices and solutions. She was previously CFO of JCET Group Co., Ltd., a $5 billion global semiconductor company listed on the Shanghai Stock Exchange. Before that Chou progressed through a series of senior financial management roles at NXP Semiconductors N.V., a $13 billion global semiconductor manufacturer, including VP and CFO for Greater China, and VP and CFO of the Portable & Computing Business Unit.

    Chou is a certified public accountant and holds a bachelor’s degree in accounting from the University of Texas, San Antonio, and an MBA from Santa Clara University.

    Original – Navitas Semiconductor

    Comments Off on Navitas Semiconductor Appoints Janet Chou as EVP, CFO, and Treasurer
  • EPC Introduces Three Evaluation Boards

    EPC Introduces Three Evaluation Boards

    2 Min Read

    EPC introduces three evaluation boards – EPC9179, EPC9181, and EPC9180 – featuring pulse current laser drivers of  75 A, 125 A, and 231 A , showcasing EPC’s AEC-Q101 GaN FETs. These FETs; EPC2252, EPC2204A, and EPC2218A are 30% smaller and more cost-effective than their predecessors. Designed for both long and short-range automotive lidar systems, these boards expedite solution evaluation with varied input and output options.

    All boards share identical functionality, differing only in peak current and pulse width. Utilizing a resonant discharge power stage, they employ a ground-referenced GaN FET driven by LMG1020 gate driver. The GaN FET’s ultrafast switching enables rapid discharge of a charged capacitor through the load’s stray inductance, enabling peak discharge currents of tens to hundreds of amps within nanoseconds.

    The printed circuit board is designed to minimize power loops and common source inductance while offering mounting flexibility for laser diodes or alternative loads. To enhance user-friendliness, all boards ship with EPC9989 interposer PCBs, featuring various footprints to accommodate a variety of laser diodes or other loads. Customers can choose one that meets their needs to evaluate the GaN solutions.

    The EPC9179/81/80 boards are designed to be triggered from 3.3V logic or differential logic signals such as LVDS. For single-ended inputs, the boards can operate with input voltages down to 2.5 V or 1.8 V with a simple modification. Designing an automotive lidar system is complex, and finding a reliable solution is challenging. The purpose of these evaluation boards is to simplify the evaluation of powerful GaN-based lidar drivers that switch faster and deliver higher pulse current than other semiconductor solutions. For technical details, EPC offers full schematics, bill of materials (BOM), PCB layout files, and a quick start guide on EPC’s website.

    “To meet the growing demand for automotive lidar, these cost-effective boards, featuring our latest AEC products, streamline evaluation, reducing time-to-market with exceptional switching performance,” said Alex Lidow, CEO, and co-founder of EPC.

    Original – EPC

    Comments Off on EPC Introduces Three Evaluation Boards