-
GaN / LATEST NEWS / WBG3 Min Read
Navitas Semiconductor announced that NIO, a global, leading, new-energy vehicle maker has released its inaugural smartphone, the NIO Phone with a powerful 66 W fast charger featuring Navitas’ next-generation gallium-nitride (GaN) GaNFast™ power ICs equipped with GaNSense™ technology. This enhancement delivers flagship-level charging efficiency, providing end users with a better vehicle-centric mobile interconnection experience. New GaNFast ICs are replacing legacy silicon chips to enable next-gen fast-charging for mobile phones, tablets and laptops.
The flagship NIO Phone features the leading Qualcomm Snapdragon 8 Gen 2 chip, and boasts a 6.81-inch 2K variable refresh-rate curved screen, with the main, ultra-wide-angle, and 50 M pixel periscope telephoto cameras. Using NIO Link panoramic-interconnection technology, the NIO Phone integrates smoothly and seamlessly with smart EVs and NIO’s in-car system. With a single click, the driver can control over 30 functions, and equipped with ultra-wideband technology, it can completely replace traditional car keys.
To support such powerful and comprehensive features, the NIO Phone is equipped with a large 5,200 mAh battery and an in-box GaNFast charger offering up to 66 W of charging power. Measuring only 57 x 57 x 30 mm (97.5 cc), the NV6136 GaNFast power IC in a high-frequency quasi-resonant (HFQR) topology with loss-less current sensing and ultra-fast autonomous short-circuit protection, delivers power density of 1.03 W/cc.
Mr. Zhang Baozhou who is responsible for NIO’s mobile phone supply chain, stated, “NIO is dedicated to providing users with high-performance smart electric vehicles and ultimate user experience, creating a delightful lifestyle for our users.
The NIO Phone fulfills the expectations and needs of NIO users for a flagship smartphone, making their cars more intuitive and user-friendly. In launching NIO Phone, we are very pleased to collaborate with Navitas Semiconductor, industry leader in GaN to utilize the mature, cutting-edge GaNFast power ICs, allowing our users to experience a comprehensive, lightweight, and efficient charging experience.”
Mr. Wu Gongli, GM of R&D for TenPao, the manufacturing partner for the NIO Phone commented, “We are excited to work with Navitas to build this leading GaN charger for NIO users, marking an important milestone in TenPao’s development. Navitas’ GaNFast ICs deliver top power-density performance with easy-to-use features. The combination of high efficiency and fast design accelerates our time-to-market.”
Mr. Yingjie (Charles) Zha, VP and GM of Navitas China, stated, “Navitas is extremely honored to collaborate with TenPao to make the NIO Phone possible by integrating the leading GaNFast technology into the NIO Phone. Navitas’ mission to ‘Electrify Our World™’ aligns closely with NIO’s objective of ‘Blue Sky Coming’. This is just the beginning of our collaboration. In the future, Navitas will spare no effort to deeply-integrate energy-saving, sustainable, world-leading GaN and SiC technology into NIO Phone’s DNA, creating a comprehensive lifestyle revolution from a smartphone to EVs.”
Original – Navitas Semiconductor
-
ROHM has expanded the library of SPICE model lineup for LTspice® of its circuit simulator. LTspice® is also equipped with circuit diagram capture and waveform viewer functions that make it possible for designers to check and verify in advance whether the circuit operation has been achieved as designed.
In addition to the existing lineup of bipolar transistors, diodes, and MOSFETs, ROHM has added SiC power devices and IGBTs that increases its number of LTspice® models to more than 3,500 for discretes (which can be downloaded from product pages). This brings the amount of coverage of LTspice® models on ROHM’s website to over 80% of all products – providing greater convenience to designers when using circuit simulators that incorporate discrete products, now including power devices.
In recent years, the increasing use of circuit simulation for circuit design has expanded the number of tools being utilized. Among these, LTspice® is an attractive option for a range of users, from students to even seasoned engineers at well-known companies. To support these and other users, ROHM has expanded its library of LTspice® models for discrete products.
Besides product pages, ROHM has added a Design Models page in October that allows simulation models to be downloaded directly. Documentation on how to add libraries and create symbols (schematic symbols) is also available to facilitate circuit design and simulation execution.
Going forward, ROHM will continue to contribute to solving circuit design issues by expanding the number of models compatible with various simulators while providing web tools such as ROHM Solution Simulator to meet growing customer needs.
Original – ROHM
-
GaN / LATEST NEWS / SiC / WBG2 Min Read
Navitas Semiconductor secured the 49th position on Forbes’ 2024 America’s Successful Small Companies list. The ranking is recognition of the company’s growth based on strong demand for Navitas’ advanced, high-efficiency, wide bandgap (WBG) GaN and SiC power components, across growing and diverse global markets and an expanding customer base.
Forbes evaluated Navitas on earnings growth, sales growth, return on equity, and total stock return over the preceding five years, with a specific focus on the last 12 months, including Navitas’ 115% increase in revenue (Q3’22 to Q3’23).
Looking ahead, Navitas will host an in-person 2023 Investor Day at the company’s new Torrance HQ (with livestream), from 12:30 pm Pacific / 3:30 pm US Eastern on Tuesday 12th December. Highlights include a deep dive into four major new GaN/SiC technology platforms and focus markets, plus customer testimonials and a refresh on the $1B+ customer pipeline, plus 2024 and long-term financial outlook.
“The top 50 ranking is great recognition by Forbes for Navitas’ growth,” said Gene Sheridan, co-founder and CEO. “GaN and SiC are accelerating the transition away from fossil fuels to ‘Electrify Our World™’ with renewable sources and efficient uses of electricity. This disruptive, displacement technology upgrades from legacy silicon chips, to make existing applications more efficient, lighter, faster charging and longer range, with lower system costs.”
Original – Navitas Semiconductor