• onsemi to Establish a Vertically Integrated SiC Manufacturing Facility in Czech Republic

    onsemi to Establish a Vertically Integrated SiC Manufacturing Facility in Czech Republic

    3 Min Read

    Electrification, renewables and artificial intelligence are global megatrends converging and driving unprecedented demands for advanced power semiconductors capable of optimizing energy conversion and management. In a strategic move toward addressing these demands, onsemi announced plans to establish a state-of-the-art, vertically integrated silicon carbide (SiC) manufacturing facility in the Czech Republic. The site would produce the company’s intelligent power semiconductors that are essential for improving the energy efficiency of applications in electric vehicles, renewable energy and AI data centers. 

    “Our brownfield investment would establish a Central European supply chain to better service our customers’ rapidly increasing demand for innovative technologies that improve the energy efficiency in their applications,” said Hassane El-Khoury, president and CEO, onsemi. “Through a close collaboration with the Czech government, the expansion would also enhance our production of intelligent power semiconductors that are essential to helping ensure the European Union is able to achieve its ambitions to significantly reduce carbon emissions and environmental impact.”  

    “onsemi’s decision to expand in Czechia is a clear confirmation of our country’s attractiveness for foreign investment and will bring significant momentum for the development of our economy,” said Mr. Jozef Síkela, Minister of Industry and Trade of the Czech Republic. “This investment not only strengthens our position in the semiconductor field but can also contribute to the development of the automotive industry and help us with its adaptation to the rise of electromobility.” 

    onsemi’s plan to expand SiC manufacturing with a multi-year brownfield investment of up to $2 billion (44 billion CZK) is part of the company’s previously disclosed long-term capital expenditure target. This investment would build on the company’s current operations in the Czech Republic, which include silicon crystal growth, silicon and silicon carbide wafer manufacturing (polished and EPI) and a silicon wafer fab. Today, the site can produce more than three million wafers annually, including more than one billion power devices. Upon completion, the operation would contribute annually more than $270 million USD (6 billion CZK) to the country’s GDP.   

    Pending all final regulatory and incentive approvals, including the investment incentive approval by the government of the Czech Republic and its notification to the European Commission, this would be one of the largest private sector investments in the Czech Republic’s history and would further contribute to the prosperity and economic dynamism of the Zlín region. onsemi is one of the first companies to invest in advanced semiconductor manufacturing in the Central European region.

    With this investment, the company would contribute to the strategic positioning of the region within the EU’s semiconductor value chain and demonstrate that all EU countries can benefit from the European Chips Act. The announcement also reflects onsemi’s strategic alignment with the overarching goals of the European Chips Act of increasing market share and technological advancement to strengthen the resilience of the EU’s semiconductor supply chains in times of ever-growing demand.   

    Silicon carbide is a critical material for high-power, high-temperature applications, and is extremely difficult to produce. onsemi is one of the only companies in the world with the ability to manufacture SiC-based semiconductors from crystal growth to advanced packaging solutions. By expanding its production facilities in the Czech Republic, onsemi would be faster to provide supply assurance for customers, strengthening its leadership in intelligent power solutions. This integration would also enable onsemi to leverage its latest advancements in research and development (R&D) to maximize manufacturing and production efficiency.

    Original – onsemi

    Comments Off on onsemi to Establish a Vertically Integrated SiC Manufacturing Facility in Czech Republic
  • Leapers Semiconductor Unveiled New LPS-Pack Series SiC Power Modules

    Leapers Semiconductor Unveiled New LPS-Pack Series SiC Power Modules

    2 Min Read

    At PCIM Europe 2024 Leapers Semiconductor unveiled the next-generation molded half-bridge SiC modules for main drive applications (LPS-Pack series). This new series was specifically developed to meet the unique requirements of a renowned international automotive manufacturer.

    Key Advantages of the New Module:

    • Innovative Design Concept: Utilizing Pressfit Pin technology for signal and current transmission, the design achieves SiC on PCB, allowing current to pass directly through the PCB. This significantly reduces the parasitic inductance of the module and system, minimizes the controller’s size, and lowers the cost of the controller’s busbar and capacitors.
    • Advanced Molding Process: The new molding process allows the module’s Tjmax to reach 200℃.
    • Unique Module Design: Ensures substrate flatness, facilitating large-area sintering between the module and the heatsink. This reduces the system’s thermal resistance and enhances yield control processes.
    • High Power Density: A single module (area < 26cm²) achieves a maximum current output of over 300 Arms. The system design is extremely compact and cost-effective.
    • Versatile Application: Suitable for platform-based and modular development applications. The series currently covers 300-600 Arms, addressing various power requirements for different customer applications.
    • Mass Production Ready: Offers superior product consistency and yield, making it more competitive than similar half-bridge modules.

    The LPS-Pack series’ distinctive design and unique advantages set it apart from other molded solutions.

    Original – Leapers Semiconductor

    Comments Off on Leapers Semiconductor Unveiled New LPS-Pack Series SiC Power Modules
  • ROHM Introduced TRCDRIVE pack™ Series with 2-in-1 SiC Molded Modules

    ROHM Introduced TRCDRIVE pack™ Series with 2-in-1 SiC Molded Modules

    2 Min Read

    ROHM has developed four models as part of the TRCDRIVE pack™ series with 2-in-1 SiC molded modules (two of 750V-rated: BSTxxxD08P4A1x4, two of 1,200V-rated: BSTxxxD12P4A1x1) optimized for xEV (electric vehicles) traction inverters. TRCDRIVE pack™ supports up to 300kW and features high power density and a unique terminal configuration – help solving the key challenges of traction inverters in terms of miniaturization, higher efficiency, and fewer person-hours.

    As the electrification of cars rapidly advances towards achieving a decarbonized society, the development of electric powertrain systems that are more efficient, compact, and lightweight is currently progressing. However, for SiC power devices that are attracting attention as key components, achieving low loss in a small size has been a difficult challenge. ROHM solves these issues inside powertrains with its TRCDRIVE pack™.

    A trademark brand for ROHM SiC molded type modules developed specifically for traction inverter drive applications, TRCDRIVE pack™ reduces size by utilizing a unique structure that maximizes heat dissipation area. On top, ROHM’s 4th Generation SiC MOSFETs with low ON resistance are built in – resulting in an industry-leading power density 1.5 times higher than that of general SiC molded modules while greatly contributing to the miniaturization of inverters for xEVs.

    The modules are also equipped with control signal terminals using press fit pins enabling easy connection by simply pushing the gate driver board from the top, reducing installation time considerably. In addition, low inductance (5.7nH) is achieved by maximizing the current path and utilizing a two-layer bus-bar structure for the main wiring, contributing to lower losses during switching.

    TRCDRIVE pack™ is scheduled to be launched by March 2025 with a lineup of 12 models in different package sizes (Small / Large) and mounting patterns (TIM: heat dissipation sheet / Ag sinter). In addition, ROHM is developing a 6-in-1 product with built-in heat sink that is expected to facilitate rapid traction inverter design and model rollout tailored to a variety of design specifications.

    Original – ROHM

    Comments Off on ROHM Introduced TRCDRIVE pack™ Series with 2-in-1 SiC Molded Modules
  • EPC Space Introduced Two New Rad-Hard GaN Discretes

    EPC Space Introduced Two New Rad-Hard GaN Discretes

    2 Min Read

    EPC Space announced the introduction of two new rad-hard GaN discretes with low on-resistance and extremely low gate charge for high power density solutions that are lower cost and more efficient than the nearest comparable radiation-hardened silicon MOSFET.

    The EPC7001BSH is a Rad-Hard eGaN® 40 V, 50 A, 11 mΩ Surface Mount (FSMDB) and the EPC7002ASH is a Rad-Hard eGaN 40 V, 15 A, 28 mΩ Surface Mount (FSMDA). Both devices have a total dose radiation rating greater than 1,000K Rad(Si) and SEE immunity for LET of 83.7 MeV/mg/cm2 with VDS up to 100% of rated breakdown. These devices come packaged in hermetic packages in very small footprints. 

    EPC’s eGaN FETs and ICs offer a higher performing alternative to conventional rad hard silicon devices for high reliability and space applications. EPC’s Rad hard devices are significantly smaller, have 40 times better electrical performance, and lower overall cost than rad hard silicon devices. Moreover, EPC Space’s rad hard devices exhibit superior resistance to radiation, supporting higher total radiation levels and SEE LET levels compared to traditional silicon solutions.

    Part NumberDrain to Source Voltage (VDS)Drain to Source Resistance (RDS(on))Single-Pulse Drain Current (IDM)Package Size (mm)Total Dose  (TID)Heavy Ion Single Event Effects (SEE)
    EPC7001BSH4011 mΩ1205.7 x 3.91 MradSEE immunity up to LET of 83.7 MeV/mg/cm2 with VDS up to 100% of rated Breakdown
    EPC7002ASH4028 mΩ403.4 x 3.41 MradSEE immunity up to LET of 83.7 MeV/mg/cm2 with VDS up to 100% of rated Breakdown

    With higher breakdown strength, lower gate charge, lower switching losses, better thermal conductivity, and lower on-resistance, power devices based on GaN significantly outperform silicon-based devices and enable higher switching frequencies resulting in higher power densities, higher efficiencies, and more compact and lighter weight circuitry for critical spaceborne missions.

    Applications benefiting from the performance of these products include DC-DC power supplies for satellites and space mission equipment, motor drives for robotics, instrumentation and reaction wheels, deep space probes, and ion thrusters.

    “These two new additions to our rad-hard product line offer designers high power and low on-resistance solutions enabling a generation of power conversion and motor drives in space operating at higher efficiencies, and greater power densities than what is achievable with traditional silicon-based rad-hard solutions,” said Bel Lazar, CEO of EPC Space.

    Original – EPC Space

    Comments Off on EPC Space Introduced Two New Rad-Hard GaN Discretes
  • Cambridge GaN Devices Launched Lowest Ever On-Resistance Parts

    Cambridge GaN Devices Launched Lowest Ever On-Resistance Parts

    3 Min Read

    Cambridge GaN Devices has launched its lowest ever on-resistance (RDS(on)) parts which have been engineered with a new die and new packages to deliver the benefits of GaN to high-power applications such as data centres, inverters, motor drives and other industrial power supplies. New ICeGaN™ P2 series ICs feature RDS(on) levels down to 25 mΩ supporting multi kW power levels with the highest efficiency.

    ANDREA BRICCONI | CHIEF COMMERCIAL OFFICER, CGD

    “The explosive growth of AI is leading to a significant increase in energy consumption, prompting data centre systems designers to prioritise the use of GaN for high-power, efficient power solutions. This new family of Power GaN ICs is a stepping stone for CGD to support our customers and partners on achieving and exceeding 100 kW/rack power density in Data Centres, required by most recent TDP (Thermal Design Power) trends for High-density computing. On the other hand, developers of motor control inverters are looking to GaN to reduce heat for smaller, longer-lasting system power. These are just two examples of markets that CGD is now aggressively targeting with these new high-power ICeGaN ICs. Simplified gate driver design and reduced system costs, combined with advanced high-performance packaging, make P2 series ICs an excellent choice for these applications.”

    Incorporating an on-chip Miller Clamp to eliminate shoot-through losses during fast switching and implementing 0 V turn off to minimise reverse conduction losses, ICeGaN Series P2 ICs outperform discrete e-Mode GaN and other incumbent technologies.

    The new packages offer improved thermal resistance performance as low as 0.28 K/W – again, equivalent or better than anything else currently available on the market – and the dual-gate pinout of the dual side DHDFN-9-1 (Dual Heat-spreader DFN) package facilitates optimal PCB layout and simple paralleling for scalability, enabling customers to address multi kW applications 6 with ease. The new packages have also been engineered to improve productivity, with wettable flanks to simplify optical inspection.

    New P2 ICeGaN GaN power ICs are sampling now. The P2 series includes four devices with RDS(on) levels of 25 mΩ and 55 mΩ, rated at 27 A and 60 A, in 10 x 10 mm footprint DHDFN-9-1 and BHDFN-9-1 (Bottom Heat-spreader DFN) packages. In common with all CGD ICeGaN products, the P2 series can be driven using any standard MOSFET or IGBT driver.

    Two demo boards feature the new P2 devices: a single leg of a 3-phase automotive inverter demo board, developed in partnership with the French public R&I institute IFP Energies , and a 3 kW totem-pole power factor correction demo board.

    The new P2 series ICeGaN GaN power ICs and demo boards were unveiled publicly at the PCIM exhibition on CGD’s booth # 7 643, Nürnberg Messe, Nuremberg, Germany, 11-13th June 2024.

    Original – Cambridge GaN Devices

    Comments Off on Cambridge GaN Devices Launched Lowest Ever On-Resistance Parts
  • WeEn Semiconductors Introduced New SiC MOSFETs and SBDs in TSPAK Package

    WeEn Semiconductors Introduced New SiC MOSFETs and SBDs in TSPAK Package

    2 Min Read

    WeEn Semiconductors unveiled new families of silicon carbide (SiC) MOSFETs and Schottky Barrier Diodes (SBDs) in TSPAK packaging at this year’s PCIM Europe exhibition and conference. The company has also used the event to showcase for the first time a comprehensive range of integrated SiC power modules in Nuremberg, from June 11-13, 2024. 

    WeEn Semiconductor’s new TSPAK MOSFET and SBD devices address the demand for high-performance, compact and reliable power management in applications ranging from automotive charging and on-board charger applications to photovoltaic (PV) inverters and high-power-density power supplies (PSUs).

    Offering a variety of configuration options for maximum design flexibility, the company’s new SiC modules are ideal for applications such as EV charging, energy storage systems, PV inverters, motor drives, industrial PSUs and test instrumentation.

    Originally developed for automotive applications, TSPAK devices combine innovative top-side cooling capability with low thermal impedance to deliver enhanced thermal performance. By removing the PCB thermal resistance from the thermal dissipating path, the Junction-Ambient thermal resistance improves by 16-19%.

    This supports high reliability by enabling a greater number of power cycles than conventional packaging as well as providing the increased power densities demanded by compact system designs. Low circuit inductance and low EMC noise help to improve performance and reduce filtering requirements. The WeEn Semiconductors family of TSPAK MOSFETs features 650V, 750V, and 1200V options with resistances ranging from 12mΩ to 150mΩ. TSPAK SBDs are available with current ratings of 10 to 40A in 650V, 750V, and 1200V variants.

    Visitors to WeEn’s stand in Hall 9, booth 538, will have the first opportunity to explore the company’s extensive range of SiC power modules. With a wide range of topology options, including half-bridge, four-pack, six-pack, and MPPT booster configurations, the power modules support voltages ranging from 650V to 1200V. Depending on the option chosen and special designs, modules incorporate a variety of advanced features including synchronized chip current sharing, integrated temperature sensors, topside cooling structures and the latest clip-bond technologies.

    Original – WeEn Semiconductors

    Comments Off on WeEn Semiconductors Introduced New SiC MOSFETs and SBDs in TSPAK Package
  • SemiQ Expands QSiC™ Product Line with 1700V SiC Schottky Discrete Diodes and Dual Diode Packs

    SemiQ Expands QSiC™ Product Line with 1700V SiC Schottky Discrete Diodes and Dual Diode Packs

    2 Min Read

    SemiQ Inc announced the addition of 1700V SiC Schottky discrete diodes and dual diode packs to its QSiC™ product line. The new devices meet the size and power demands of a wide range of demanding applications including switched-mode power supplies, uninterruptible power supplies (UPS), induction heaters, welding equipment, DC/DC converters, solar inverters and electric vehicle (EV) charging stations.

    Featuring zero reverse recovery current and near-zero switching loss, SemiQ’s 1700V SiC Schottky diode technologies offer enhanced thermal management that reduces the need for cooling. As a result, engineers can implement highly efficient, high-performance designs that minimize system heat dissipation, allow the use of smaller heatsinks and lead to cost and space savings. All of the new products support fast switching across operating junction temperatures (Tj) of -55 °C to 175 °C.

    The GP3D050B170X (bare die) and GP3D050B170B (TO-247-2L package) discrete diode is rated for respective maximum forward currents of 110A and 151A. Device design supports easy parallel configurations, enhancing flexibility and scalability for various power applications.

    The GHXS050B170S-D3 and GHXS100B170S-D3 dual diode packs are rugged modules supplied in a SOT-227 package. Maximum respective forward currents are 110A and 214A and each combine outstanding performance at high-frequencies with low loss and low EMI operation. ensure energy efficiency and reliability by minimizing interference.

    Key features include low stray inductance, high junction temperature operation, rugged and easy mounting, and an internally isolated package (AIN), which provides optimal insulation and thermal conductivity. Low junction-to-case thermal resistance enables efficient heat dissipation, ensuring stability under high-power conditions. The modules can be easily connected in parallel due to the positive temperature coefficient (Tc) of the forward voltage (Vf).

    “Our new 1700V SiC diodes represent a leap forward in power efficiency and reliability,” said Dr. Timothy Han, President at SemiQ. “With their compact and flexible design, low-loss operation, and superior thermal management, our QSiC™ diodes will enable our customers to create innovative, high-performance solutions while reducing costs and improving overall system efficiency.”

    All parts have been tested at voltages exceeding 1870V and have undergone avalanche testing up to 1250mJ. Visitors to SemiQ’s stand at Alfatec’s booth (Hall 7, 418) at PCIM Europe will have the first opportunity to explore the new 1700V SiC diodes.

    Original – SemiQ

    Comments Off on SemiQ Expands QSiC™ Product Line with 1700V SiC Schottky Discrete Diodes and Dual Diode Packs
  • Applied EV Selected CISSOID's new CXT-ICM3SA SiC Inverter Control Modules to Drive Autonomous Vehicle E-Motors

    Applied EV Selected CISSOID’s new CXT-ICM3SA SiC Inverter Control Modules to Drive Autonomous Vehicle E-Motors

    2 Min Read

    Applied EV, a leader in vehicle control system technologies for Software Defined Machines™, announced they have selected CISSOID’s new CXT-ICM3SA series of Silicon Carbide Inverter Control Modules (ICMs) to drive their latest generation of autonomous vehicle E-motors.

    Dedicated to the E-mobility market, CISSOID’s software-powered SiC ICMs are augmented with onboard programmable hardware, accelerating the response time to critical events, off-loading the processor cores and enhancing functional safety. 

    The ICM is integrated into Applied EV’s Digital Backbone™, a centralised control system combining state-of-the-art software and hardware, setting a new benchmark for safety rated vehicles. 

    Applied EV’s CEO, Julian Broadbent, said “Both Applied EV and CISSOID recognise functional safety is critical in the development and deployment of autonomous vehicles. The partnership integrates CISSOID’s ICMs into our Digital Backbone, allowing for a faster development cycle, giving our customer the safest vehicle in the shortest time possible.” 

    CISSOID’s CEO, Dave Hutton, said: “We are excited to embark on this collaborative journey with Applied EV to drive innovation in e-mobility. By combining our expertise in electric motor design with Applied EV’s proficiency in software and vehicle integration, the aim is to deliver a game-changing electric motor drive platform for the future of mobility together.” 

    The collaboration underscores the shared commitment to driving positive change in the automotive industry and contributing to a more sustainable future for transportation globally.

    Original – CISSOID

    Comments Off on Applied EV Selected CISSOID’s new CXT-ICM3SA SiC Inverter Control Modules to Drive Autonomous Vehicle E-Motors
  • Nexperia Expands SiC Diodes Portfolio

    Nexperia Expands SiC Diodes Portfolio

    2 Min Read

    Nexperia announced that its class-leading 650 V, 10 A silicon carbide (SiC) Schottky diode is now automotive qualified (PSC1065H-Q) and available in real-two-pin (R2P) DPAK (TO-252-2) packaging, making it suitable for various applications in electric vehicles and other automobiles.

    Additionally, in a further extension to its portfolio of SiC diodes, Nexperia is now also offering industrial-grade devices with current ratings of 6  A, 16 A, and 20 A in TO-220-2, TO-247-2, and D2PAK-2 packaging to facilitate greater design flexibility. These diodes address the challenges of demanding high voltage and high current applications including switched-mode power supplies, AC-DC and DC-DC converters, battery-charging infrastructure, motor drives, uninterruptible power supplies as well as photovoltaic inverters for sustainable energy production.

    The merged PiN Schottky (MPS) structure of these devices provides additional advantages over similar competing SiC diodes, including outstanding robustness against surge currents. This eliminates the need for additional protection circuitry, thereby significantly reducing system complexity and enabling hardware designers to achieve higher efficiency with smaller form factors in rugged high-power applications. Nexperia’s consistent quality across various semiconductor technologies provides designers with confidence in the reliability of these diodes.

    In addition, Nexperia’s ‘thin SiC’ technology delivers a thinner substrate (one-third of its original thickness) which dramatically reduces the thermal resistance from the junction to the back-side metal. This results in lower operating temperature, higher reliability and device lifetime, higher surge current capability, and lower forward voltage drop.

    “We’ve seen an excellent market response to the initial release of our SiC diodes. They have proven themselves in design-ins with one notable example in power supplies for industrial applications, where customers have achieved especially good results. The superior reverse recovery of these diodes translates to high efficiency in real-world use”, says Katrin Feurle, Senior Director and Head of Product Group SiC Diodes & FETs at Nexperia. “We are particularly excited that this is our first automotive-qualified product, and it is already recognized by major automotive players for its performance and reliability.”

    Original – Nexperia

    Comments Off on Nexperia Expands SiC Diodes Portfolio
  • Qorvo® Announced Industry's First 4 mOhm SiC JFET in TOLL Package

    Qorvo® Announced Industry’s First 4 mOhm SiC JFET in TOLL Package

    2 Min Read

    Qorvo® announced the industry’s first 4 milliohm silicon carbide (SiC) junction field effect transistor (JFET) in a TOLL package. It was designed for circuit protection applications including solid-state circuit breakers, where low resistance, superior thermal performance, small size and reliability are paramount. 

    With RDS(on) of just 4 milliohm, the UJ4N075004L8S offers the industry’s lowest on-resistance among the 650V to 750V class of power devices in standard discrete packages. This low RDS(on) drives significant reductions in heat generation and, when coupled with a compact TOLL package, enables a solution size that is 40% smaller than competing devices in TO-263 packages.

    This small solution size supports the space-limited dimensions of today’s electromechanical circuit breakers and operates without the need for elaborate cooling systems, accelerating the transition from electromechanical circuit breakers to semiconductor-based solid-state circuit breakers (SSCBs).

    “With the introduction of the UJ4N075004L8S, Qorvo continues to lead the way in SiC power innovation, catalyzing the emergence of applications such as circuit protection with ultra-low RDS(on) FET offerings in very small footprints,” said Ramanan Natarajan, director of product line marketing for Qorvo’s SiC Power Products business. “The SSCB market is growing rapidly, and Qorvo’s newest product marks a significant milestone in the evolution of the technology.”

    Qorvo’s JFETs are highly robust devices well suited to meet the challenges of circuit protection, providing the ability to turn off at very high inrush currents during circuit faults. Qorvo’s newest JFET can also withstand high instantaneous junction temperatures without experiencing degradation or parametric drift. The normally-on nature of the JFET lends itself to seamless integration into systems where the switch is in the on-state by default and in turn-off state under fault conditions.

    The UJ4N075004L8S is now available for sampling and will enter full production in Q4 2024, accompanied by additional JFET options, including 750V with 5 milliohm and 1200V with 8 milliohm ratings, all in TO-247 packaging. For more details about this transformative power technology and detailed product specifications, please visit UJ4N075004L8S.

    Original – Qorvo

    Comments Off on Qorvo® Announced Industry’s First 4 mOhm SiC JFET in TOLL Package