• EPC Announced 4th Edition of ‘GaN Power Devices for Efficient Power Conversion’ Book

    EPC Announced 4th Edition of ‘GaN Power Devices for Efficient Power Conversion’ Book

    2 Min Read

    Efficient Power Conversion Corporation (EPC) announced the release of the 4th edition of its groundbreaking textbook, GaN Power Devices for Efficient Power Conversion.

    This latest edition reflects the rapid advancements in GaN technology and its transformative impact across various industries, including renewable energy, electric vehicles, data centers, robotics, and space applications. Co-authored by EPC CEO Dr. Alex Lidow and a team of GaN experts, the textbook remains an indispensable resource for engineers, students, and industry innovators looking to stay at the forefront of power electronics.

    What’s New in the 4th Edition

    • Expanded coverage on the integration of GaN into new applications such as AI servers, autonomous systems, and eMobility
    • Updates on design techniques that maximize GaN’s superior efficiency, power density, and thermal performance
    • Comprehensive insights into GaN ICs and their role in simplifying complex designs and improving system reliability
    • A dedicated section on the latest advancements in GaN reliability and manufacturability
    • Real-world application examples, case studies, and practical design tips for engineers.

    “Since its inception, this textbook has guided engineers and innovators adopting GaN,” said Dr. Alex Lidow, CEO and co-author. “The 4th edition deepens understanding of GaN’s capabilities and empowers readers to unlock its full potential.”

    This edition underscores EPC’s commitment to educating the power electronics community and supporting the adoption of GaN as the go-to technology for efficient power conversion. The textbook is available for purchase through Wiley.

    Availability and Additional Resources

    The 4th edition of GaN Power Devices for Efficient Power Conversion is available now. For additional resources, including evaluation boards, design support tools, and application notes, visit epc-co.com.

    Original – Efficient Power Conversion

    Comments Off on EPC Announced 4th Edition of ‘GaN Power Devices for Efficient Power Conversion’ Book
  • SemiQ Announced New 1200V 3rd Gen SiC MOSFETs with Enhanced Performance and Low Switching Losses

    SemiQ Announced New 1200V 3rd Gen SiC MOSFETs with Enhanced Performance and Low Switching Losses

    3 Min Read

    SemiQ Inc has announced the QSiC 1200V MOSFET, a third-generation SiC device that shrinks the die size while improving switching speeds and efficiency.

    The device is 20% smaller versus QSiC’s second-generation SiC MOSFETs and has been developed to increase performance and cut switching losses in high-voltage applications. SemiQ is targeting a diverse range of markets including EV‑charging stations, solar inverters, industrial power supplies and induction heating.

    It will be on display for the first time at the Applied Power Electronics Conference (APEC), on March 16-20, 2025.

    In addition to having a drain-to-source voltage (VDS) of 1200 V, the MOSFET reduces total switching losses to 1646 µJ and has a low on-resistance (RDS,on) of 16.1 mΩ. It is available as a bare die or in a four-pin TO-247 4L discrete package measuring 31.4 x 16.1 x 4.8 mm, which includes a reliable body diode and a driver-source pin for gate driving.

    High-quality Known Good Die (KGD) testing has been conducted using UV tape and Tape & Reels, with all parts undergoing testing and verification at voltages exceeding 1400V, as well as being avalanche tested to 800 mJ. Reliability is further improved through the device’s 100% wafer-level gate oxide burn-in screening and 100% UIL testing of discrete packaged devices.

    The device has been developed to have a low reverse recovery charge (QRR 470 nC) and lower capacitance, improving switching speed, switching losses, EMI and overall efficiency; to be easy to parallel; and with a longer creepage distance (9 mm), improving electrical insulation, voltage tolerance and reliability.

    Dr. Timothy Han, President at SemiQ said: “The move to Gen3 SiC further increases the benefits of SiC MOSFETs over IGBTs. These devices not only deliver vastly improved performance, but cut die size and cost versus previous generations. As a result, the launch of the QSiC 1200V opens the technology, and its benefits, to a far greater range of applications. The device delivers industry leading performance figures, notably on gate threshold voltage, and we’re delighted to be demonstrating this first at APEC.”

    The QSiC 1200V MOSFETs has a continuous operational and storage temperature of -55oC to 175oC. It has a recommended operational gate-source voltage of -4/18 V, with a VGSmax of -8/22 V, and a power dissipation of 484 W (core and junction temperature 25oC).

    For static electrical characteristics, the device has a junction-to-case thermal resistance of 0.26oC per watt (40oC per watt junction to ambient). Its Zero gate voltage drain current is 100 nA, with a gate-source voltage current of 10 nA. Its AC characteristics include a turn-on delay time of 21 ns with rise time of 25 ns; its turn-off delay time is 65 ns with a fall time of 20 ns.

    An increased range of resistances is available in bare-die and TO-247 4L packages with the following options:

    • 16 mΩ: GP3T016A120X / GP3T016A120H
    • 20 mΩ: GP3T020A120X / GP3T020A120H
    • 40 mΩ: GP3T040A120X / GP3T040A120H
    • 80 mΩ: GP3T080A120X / GP3T040A120H

    Both the 16 mΩ (AS3T016A120X / AS3T016A120H) and 40 mΩ (AS3T040A120X / AS3T040A120H) options have been qualified for Automotive Applications Product Validation according to AEC-Q101.

    The SemiQ QSiC 1200V will be on display at the Georgia World Congress Center in Atlanta, from March 16 to 20, 2025. Visitors to SemiQ’s booth #1348 will have the opportunity to explore the new third-generation MOSFETs.

    Original – SemiQ

    Comments Off on SemiQ Announced New 1200V 3rd Gen SiC MOSFETs with Enhanced Performance and Low Switching Losses
  • Navitas 8.5kW PSU Designed for AI Data Centers Wins Electronics For You Innovation Award

    Navitas 8.5kW PSU Designed for AI Data Centers Wins Electronics For You Innovation Award

    1 Min Read

    Navitas Semiconductor’s 8.5kW power supply unit (PSU), powered by GaNFast™ and GeneSiC™ technologies, has been recognized for its innovative design. Tailored for AI and hyperscale data centers, the PSU achieves 98% efficiency while meeting Open Compute Project (OCP) and Open Rack v3 (ORv3) specifications.

    The design minimizes ripple current, EMI, and device count by 25%, reducing costs. Its 3-phase LLC topology utilizes GaNSafe™ technology with integrated control, drive, sensing, and protection, along with Gen-3 Fast SiC MOSFETs for enhanced performance and reliability.

    Original – Navitas Semiconductor

    Comments Off on Navitas 8.5kW PSU Designed for AI Data Centers Wins Electronics For You Innovation Award
  • Navitas GaN & SiC Devices Power Dell’s New AI-Optimized Notebook Family

    Navitas GaN & SiC Devices Power Dell’s New AI-Optimized Notebook Family

    2 Min Read

    Navitas Semiconductor announced its adoption of both technologies into Dell’s family of notebook adapters, from 60 W to 360 W.

    Enabled by over 20 years of SiC technology leadership, GeneSiC leads on performance of SiC MOSFETs with patented ‘trench-assisted planar’ technology and 5th-gen GeneSiC silicon carbide (SiC) diodes to deliver high-speed, high-efficiency performance with proprietary ’low-knee’ technology for cool operation.

    Navitas’ GaNFast power ICs enable high-frequency, high-efficiency power conversion, achieving 3x more power and 3x faster charging in half the size and weight compared to prior designs with legacy silicon power devices.  

    Navitas GaN & SiC technology together enables Dell to provide high-speed charging, with highest efficiency, coolest temperature, smallest size, and lowest material count. Dell’s latest line-up of AI notebooks includes Neural Processor Units (NPUs), which are dedicated AI engines, to manage sustained AI and AI offload. This builds on Dell’s portfolio as the broadest GaN adapter offering for notebooks in the industry.

    The new adapters will also help Dell achieve its advanced sustainability goals, with a focus on CO2 reduction and energy reduction. The adapter cases require up to 50% less plastic and are made with post-recycled materials, significantly reducing energy waste, and improving resource utilization. Navitas’ GaNFast and GeneSiC technologies increase the level of system integration and switching frequency, which reduces the number of components, as well as the size, resulting in a ‘dematerialization’ that lowers carbon footprint throughout the production, packaging, and logistics processes. Each GaNFast power IC shipped saves 4 kg CO2 and every SiC MOSFET shipped saves 25 kg CO2 vs. legacy silicon power chips.

    “Since Dell’s first GaN adapter was enabled by Navitas back in 2020, we’ve worked closely with Dell engineering to further improve charging speed, efficiency, size, weight, and now environmental footprint”, said Gene Sheridan, CEO and co-founder of Navitas. “Dell’s new adapters are an optimal solution for speed, portability, and sustainability. Our clients achieve a win-win for both the market and environment by deploying Navitas GaNFast power ICs and GeneSiC power devices.”

    Original – Navitas Semiconductor

    Comments Off on Navitas GaN & SiC Devices Power Dell’s New AI-Optimized Notebook Family
  • Mitsubishi Electric Partners with Horizon Europe's FLAGCHIP Project to Develop Technology for Monitoring Power Module Conditions

    Mitsubishi Electric Partners with Horizon Europe’s FLAGCHIP Project to Develop Technology for Monitoring Power Module Conditions

    2 Min Read

    Mitsubishi Electric Corporation will begin developing a prototype to demonstrate a junction-temperature estimation technology for power modules, which it is pursuing as a partner in the European Union’s Horizon Europe project aimed at developing advanced power modules and improving cost efficiency of renewable-energy power-generation.

    The company is participating through its European subsidiary Mitsubishi Electric R&D Centre Europe B.V., which has joined the project, called Flagship Advanced Solutions for Condition and Health Monitoring in Power Electronics (FLAGCHIP).

    In the global effort to expand the introduction of renewable energy to support carbon neutrality, the need to upgrade the reliability and maintenance of electronic devices for power conversion has become increasingly important. In particular, attention is being focused on technological innovations aimed at strengthening power module reliability and improving data acquisition and analysis methods to accurately determine degradation conditions in order to carry facilitate more timely maintenance.

    The FLAGCHIP project currently involves 11 companies and academic institutions from nine European countries engaged in developing advanced power modules, condition and health monitoring technologies, and devising methods for calculating cost efficiency of renewable-energy power-generation systems and reducing associated costs. Demonstrations of wind-power and solar-power generation systems using these technologies and methods will be conducted at test facilities owned by project partners in Norway and France.

    Mitsubishi Electric will be in charge of demonstrating a technology that estimates the junction temperature of silicon carbide metal-oxide-semiconductor field-effect transistor (SiC-MOSFET) semiconductor chips inside the power module, which will provide necessary data for accurately estimating module degradation.

    Starting in October 2026, the demonstration will use the newly developed prototype at a test facility in France where direct current (DC) voltage is converted to a specific DC voltage for a wind-power generation system.

    Original – Mitsubishi Electric

    Comments Off on Mitsubishi Electric Partners with Horizon Europe’s FLAGCHIP Project to Develop Technology for Monitoring Power Module Conditions
  • Infineon Technologies Predicts GaN Semiconductors to Reach Adoption Tipping Points Across Multiple Industries in 2025

    Infineon Technologies Predicts GaN Semiconductors to Reach Adoption Tipping Points Across Multiple Industries in 2025

    3 Min Read

    As the world continues to face the challenges of climate change and environmental sustainability, Infineon Technologies AG is at the forefront of innovation, harnessing the power of all relevant semiconductor materials including silicon (Si), silicon carbide (SiC), and gallium nitride (GaN) to drive meaningful progress towards decarbonization and digitalization.

    In its 2025 predictions – GaN power semiconductors, Infineon highlights that gallium nitride will be a game-changing semiconductor material revolutionizing the way we approach energy efficiency and decarbonization across consumer, mobility, residential solar, telecommunication, and AI data center industries. GaN provides significant benefits in end customers’ applications enabling efficient performance, smaller size, lighter weight, and lower overall cost. While USB-C chargers and adapters have been the forerunners, GaN is now on its way to reaching tipping points in its adoption in further industries, substantially driving the market for GaN-based power semiconductors.

    ”Infineon is committed to driving decarbonization and digitalization through innovation based on all semiconductor materials Si, SiC, and GaN,” said Johannes Schoiswohl, Head of the GaN Business Line at Infineon. “The relevance of comprehensive power systems will increase with GaN manifesting its role due to its benefits in efficiency, density, and size. Given that cost-parity with silicon is in sight, we will see an increased adoption rate for GaN this year and beyond.

    Powering AI will be highly depending on GaN. The rapid increase of required computing power and energy demand in AI data centers will drive the need for advanced solutions capable of handling the substantial loads associated with AI servers. Power supplies that once managed 3.3 kW are now evolving towards 5.5 kW, with projections moving towards 12 kW or more per unit. By leveraging GaN, AI data centers can improve power density, which directly influences the amount of computational power that can be delivered within a given rack space. While GaN presents clear advantages, hybrid approaches combining GaN with Si and SiC are ideal for meeting the requirements of AI data centers and achieving the best trade-offs between efficiency, power density and system cost.

    In the home appliance market, Infineon expects GaN to gain significant traction, driven by the need for higher energy efficiency ratings in applications like washing machines, dryers, refrigerators and water/heat pumps. In 800 W applications, for example, GaN can enable a two percent efficiency gain, which can help manufacturers achieve the coveted A ratings. According to Infineon, GaN-based on-board chargers and DC-DC converters in electric vehicles will contribute to a higher charging efficiency, power density, and material sustainability, with a shift towards 20 kW+ systems. Together with high-end SiC solutions, GaN will also enable more efficient traction inverters for both 400 V and 800 V EV systems, contributing to an increased driving range.

    In 2025 and beyond, robotics will see widespread adoption of GaN supported by the material’s ability to enhance compactness, driving growth in delivery drones, care robots and humanoid robots. As robotics technology integrates AI advancements like natural language processing and computer vision, GaN will provide the efficiency required for compact, high-performance designs. Integrating inverters within the motor chassis eliminates the inverter heatsink while reducing cabling to each joint/axis and simplifying EMC design.

    Infineon is further pushing investment in GaN research and development to overcome the challenges of cost and scalability. With the broadest product and IP portfolio, the highest quality standards, leading-edge innovations such as 300 mm GaN wafer manufacturing and bidirectional switch (BDS) transistors, the company is bolstering its leading role in driving decarbonization and digitalization based on all relevant semiconductor materials including gallium nitride.

    Download the “2025 GaN predictions” ebook here.

    Original – Infineon Technologies

    Comments Off on Infineon Technologies Predicts GaN Semiconductors to Reach Adoption Tipping Points Across Multiple Industries in 2025
  • FORVIA HELLA Adopts Infineon's new 1200 V CoolSiC™ MOSFET in Q-DPAK Package for Next-Gen 800 V DC-DC Charging Solutions

    FORVIA HELLA Adopts Infineon’s new 1200 V CoolSiC™ MOSFET in Q-DPAK Package for Next-Gen 800 V DC-DC Charging Solutions

    2 Min Read

    FORVIA HELLA, an international automotive supplier, has selected the new CoolSiC™ Automotive MOSFET 1200 V from Infineon Technologies AG for its next generation 800 V DCDC charging solution. Designed for on-board charger and DCDC applications in 800 V automotive architectures, Infineon’s CoolSiC MOSFET comes in a Q-DPAK package. The device uses top-side cooling (TSC) technology, which enables excellent thermal performance, easier assembly and lower system costs.

    “We are excited to continue our partnership with FORVIA HELLA, leveraging our high-efficiency SiC products based on TSC packages,” said Robert Hermann, Vice President of Automotive High-Voltage Chips and Discretes at Infineon. “We are continuously working to take e-mobility to the next level by providing state-of-the-art SiC solutions that meet the automotive industry’s stringent requirements for performance, quality, and system cost.”

    “Our customers are at the center of our efforts. That is why we have chosen Infineon’s  CoolSiC Automotive MOSFET 1200 V for our next generation of DCDC converters”, said Guido Schütte, Member of the Electronics Executive Board at FORVIA HELLA. “Together with Infineon, we will continue to offer sustainable and innovative products and comprehensive services that exceed our customers’ expectations and drive the development of advanced mobility.”

    Infineon’s new CoolSiC Automotive MOSFET 1200 V in the Q-DPAK package is based on Gen1p technology and offers a drive voltage in the range of V GS(off)= 0 V and V GS(on)= 20 V. The 0 V turn-off enables unipolar gate control, which simplifies design by reducing the number of components in the PCB.

    With a creepage distance of 4.8 mm, the package achieves an operating voltage of over 900 V without the need for additional insulation coating. Compared to backside cooling, the TSC technology ensures optimized PCB assembly, reducing parasitic effects and resulting in significantly lower leakage inductances. As a result, customers benefit from lower package parasitics and lower switching losses. Heat dissipation is further improved by diffusion soldering the chip with .XT technology.

    Original – Infineon Technologies

    Comments Off on FORVIA HELLA Adopts Infineon’s new 1200 V CoolSiC™ MOSFET in Q-DPAK Package for Next-Gen 800 V DC-DC Charging Solutions
  • Vishay Intertechnology Introduced 650 V and 1200 V SiC Schottky Diodes in SOT-227 Package

    Vishay Intertechnology Introduced 650 V and 1200 V SiC Schottky Diodes in SOT-227 Package

    2 Min Read

    Vishay Intertechnology, Inc. introduced 16 new 650 V and 1200 V silicon carbide (SiC) Schottky diodes in the industry-standard SOT-227 package. Designed to deliver high speed and efficiency for high frequency applications, the Vishay Semiconductors devices offer the best trade-off between capacitive charge (QC) and forward voltage drop for diodes in their class.

    The devices consist of 40 A to 240 A dual diode components in a parallel configuration, and 50 A and 90 A single phase bridge devices. Built on state of the art thin wafer technology, the diodes feature a low forward voltage drop down to 1.36 V that dramatically reduces conduction losses for increased efficiency. Further increasing efficiency, the devices offer better reverse recovery parameters than Si-based diodes and have virtually no recovery tail.

    Typical applications for the components will include AC/DC PFC and DC/DC ultra high frequency output rectification in FBPS and LLC converters for photovoltaic systems, charging stations, industrial UPS, and telecom power supplies. In these applications, the diodes’ low QC down to 56 nC allows for high speed switching, while their industry-standard package offers a drop-in replacement for competing solutions.

    The diodes deliver high temperature operation to +175 °C and a positive temperature coefficient for easy parallelling. UL-approved to file E78996, the devices feature a large creepage distance between terminals and a simplified mechanical design for rapid assembly.

    Original – Vishay Intertechnology

    Comments Off on Vishay Intertechnology Introduced 650 V and 1200 V SiC Schottky Diodes in SOT-227 Package
  • Wolfspeed Unveils Gen 4 Silicon Carbide Platform for High-Power Efficiency and Durability Across Multiple Applications

    Wolfspeed Unveils Gen 4 Silicon Carbide Platform for High-Power Efficiency and Durability Across Multiple Applications

    3 Min Read

    Wolfspeed, Inc. introduced its new Gen 4 technology platform, which enables design rooted in durability and efficiency, all while reducing system cost and development time. Engineered to simplify switching behaviors and design challenges commonly experienced in high-power designs, Gen 4 charts a long-term roadmap across Wolfspeed’s product categories, including power modules, discrete components, and bare die products. These products are currently available in the 750V, 1200V and 2300V classes.

    “We understand that each application’s design comes with a unique set of requirements,” said Jay Cameron, senior vice president of Wolfspeed power products. “From its inception, our goal for Gen 4 has been to improve overall system efficiency in real-world operating environments, with a focus on delivering maximum performance at the system level. Gen 4 enables design engineers to create more efficient, longer-lasting systems that perform well in tough operating environments at a better overall system cost.”

    Silicon carbide technology is one of the fastest growing components of both the power device market and the greater semiconductor industry. A superior alternative to silicon, silicon carbide is ideal for high power applications – such as EV powertrains, e-mobility, renewable energy systems, battery energy storage systems, and AI data centers – that unlocks improved performance and lower system costs.

    As the U.S. and the globe pursue more efficient and environmentally friendly solutions to meet the world’s ever-increasing need for high-voltage energy sources, it is crucial that the U.S. continue to make strategic investments to cement its technological dominance, while continuing to spur American innovation in critical technologies.

    Wolfspeed is the only silicon carbide producer with both silicon carbide material and silicon carbide device fabrication facilities based in the United States, a factor that is becoming increasingly important under the new U.S. Administration’s increased focus on national security and investment in U.S. semiconductor production.

    “Innovative technology unlocks business opportunity,” said Devin Dilley, president and chief product officer, EPC Power, a U.S.-based utility-scale inverter manufacturer. “Wolfspeed’s new Gen 4 SiC technology is enabling EPC Power to make a paradigm shift in how energy is created and stored globally.”

    “As the world-leader in silicon carbide technology, based on American IP and delivered through U.S.-based fabrication facilities, Wolfspeed has been relentless in our drive to continue to innovate and bring our silicon carbide solutions to more and more industries with increasingly challenging use cases,” said Wolfspeed Executive Chairman, Tom Werner.  “Our Gen 4 platform will be delivered via our highly efficient 200mm wafers, which will enable us to deliver products on a scale and level of yield not seen in this industry before.”

    Wolfspeed’s Gen 4 platform was designed to comprehensively improve system efficiency and prolong application life, even in harshest of environments, while helping to reduce system cost and development time.  The technology will deliver significant performance enhancements for designers of high-power automotive, industrial, and renewable energy systems, with key benefits including:

    • Holistic System Efficiency: Delivering up to a 21% reduction in on-resistance at operating temperatures with up to 15% lower switching losses.
    • Durability: Ensuring reliable performance, including a short-circuit withstand time of up to 2.3 µS to provide additional safety margin.
    • Lower System Cost: Streamlining design processes to reduce system costs and development time.

    Learn more in Wolfspeed’s white paper “Gen 4 Silicon Carbide Technology: Redefining Performance and Durability in High-Power Applications”.

    Wolfspeed’s Gen 4 products are available in 750V, 1200V and 2300V nodes, with options for power modulesdiscrete components, and bare die products.  New product introductions, including additional footprints and RDSON ranges, will be available throughout 2025 and early 2026.

    Original – Wolfspeed

    Comments Off on Wolfspeed Unveils Gen 4 Silicon Carbide Platform for High-Power Efficiency and Durability Across Multiple Applications
  • EPC Launches High-Performance BLDC Motor Drive Inverter Reference Design for Precision Robotics Applications

    EPC Launches High-Performance BLDC Motor Drive Inverter Reference Design for Precision Robotics Applications

    2 Min Read

    Efficient Power Conversion Corporation (EPC) announced the launch of the EPC91104, a high-performance 3-phase BLDC motor drive inverter reference design. This innovative design is ideal for powering compact, precision motors in humanoid robots, such as those used for wrist, finger, and toe movements.

    The EPC91104 evaluation board uses the EPC23104 ePower™ Stage IC, offering a maximum RDS(on) of 11 mΩ and supporting DC bus voltages up to 80 V. The design supports up to 14 Apk steady-state and 20 Apk pulsed current, ensuring reliable performance for humanoid robot applications that require fine motor control and precision.

    Key Features of the EPC91104

    • Wide Voltage Range: Operates between 14 V and 80 V, accommodating a variety of battery systems
    • Compact Design: Suitable for space-constrained robotics
    • Advanced Protection: Includes overcurrent and input undervoltage protection, ensuring reliability in demanding applications
    • Optimized Efficiency: Low-distortion switching reduces torque ripple and motor noise

    Humanoid robots demand motors with precision and compactness, and the EPC91104 is specifically designed to meet those needs for applications like small joint actuation, said Alex Lidow, CEO of EPC

    For higher-current requirements, such as elbow and knee motors in humanoid robots, EPC offers the EPC9176 board in the same family. With enhanced current capacity, the EPC9176 complements the EPC91104 to cover a full range of motor drive applications in humanoid robotics.

    The EPC91104 is compatible with controller boards from leading manufacturers, including Microchip, Texas Instruments, STMicroelectronics, and Renesas, offering engineers flexibility in development. It is equipped with comprehensive sensing and protection features, ensuring rapid prototyping and testing.

    Original – Efficient Power Conversion

    Comments Off on EPC Launches High-Performance BLDC Motor Drive Inverter Reference Design for Precision Robotics Applications