• Navitas Semiconductor Released Automotive-Qualified SiC MOSFETs in D2PAK-7L and TOLL Packages

    Navitas Semiconductor Released Automotive-Qualified SiC MOSFETs in D2PAK-7L and TOLL Packages

    2 Min Read

    Navitas Semiconductor announced the release of a portfolio of third-generation automotive-qualified SiC MOSFETs in D2PAK-7L (TO-263-7) and TOLL (TO-Leadless) surface-mount (SMT) packages.

    Navitas’ proprietary ‘trench-assisted planar’ technology provides world-leading performance over temperature and delivers high-speed, cool-running operation for electric vehicle (EV) charging, traction, and DC-DC conversion. With case temperatures up to 25°C lower than conventional devices, Gen-3 Fast SiC offers an operating life up to 3x longer than alternative SiC products, for high-stress EV environments.

    Gen-3 Fast MOSFETs are optimized for the fastest switching speed, highest efficiency, and support increased power density in EV applications such as AC compressors, cabin heaters, DC-DC converters, and on-board chargers (OBCs). Navitas’ dedicated EV Design Center has demonstrated leading edge OBC system solutions up to 22 kW with 3.5 kW/liter power density, and over 95.5% efficiency.

    400 V-rated EV battery architectures are served by the new 650 V Gen-3 Fast MOSFETs featuring RDS(ON) ratings from 20 to 55 mΩ. The 1,200 V ranges from 18 to 135 mΩ and is optimized for 800 V systems.

    Both 650 and 1,200 V ranges are AEC Q101-qualified in the traditional SMT D2PAK-7L (TO-263-7) package. For 400 V EVs, the 650 V-rated, surface-mount TOLL package offers a 9% reduction in junction-to-case thermal resistance (RTH,J-C), 30% smaller PCB footprint, 50% lower height, and 60% smaller size than the D2PAK-7L. This enables very high-power density solutions, while minimal package inductance of only 2 nH ensures excellent fast-switching performance and lowest dynamic package losses.

    The automotive-qualified 650 V and 1200 V G3F SiC MOSFET family in D2PAK-7L and TOLL surface mount packages are released and available immediately for purchase.

    Original – Navitas Semiconductor

    Comments Off on Navitas Semiconductor Released Automotive-Qualified SiC MOSFETs in D2PAK-7L and TOLL Packages
  • Power Master Semiconductor Released 650V eSiC MOSFETs in TOLL Package

    Power Master Semiconductor Released 650V eSiC MOSFETs in TOLL Package

    2 Min Read

    Power Master Semiconductor has released a new package portfolio, TO leadless (TOLL) package for 650V eSiC MOSFET series to meet the increasing demands for high power density and efficiency with superior switching performance in various applications such as AI data center servers, telecom infrastructure, flat panel display power, ESS, and battery formations.

    Recently, the rapid growth of artificial intelligence (AI) is expected to drive continued strong data center demand. AI datacenters rely on GPUs that consume 10 to 15 times more power than traditional CPUs. SiC MOSFETs in TOLL package are an optimal solution for the rapidly expanding AI applications today.

    The TOLL package has a footprint of 9.9mm x 11.7mm, reducing the PCB area by 30% compared to the D2PAK 7-lead package. Moreover, with a thickness of 2.3mm, it has 60% less height than the D2PAK 7-lead package.

    The TOLL offers superior thermal performance and low package inductance (2nH) compared to D2PAK 7-lead package. Kelvin source configuration lowers gate noise and reduces turn-on loss by 60% compared to same device without Kelvin source configuration, enabling higher frequency operation and improved power density. The new PCT65N27M1 has a VDSS rating of 650 V with a typical RDS(ON) of 27mΩ and a maximum drain current (ID) of 84 A.

    Power Master Semiconductor’s products in TOLL package has special grooves in the gate and source pins to enhance the performance of the solder joint and offers Moisture Sensitivity Level 1 (MSL 1).

    Original – Power Master Semiconductor

    Comments Off on Power Master Semiconductor Released 650V eSiC MOSFETs in TOLL Package
  • ROHM's 4th Gen SiC MOSFET Chips Used in ZEEKR

    ROHM’s 4th Gen SiC MOSFET Chips Used in ZEEKR

    2 Min Read

    ROHM announced the adoption of power modules equipped with 4th generation SiC MOSFET bare chips for the traction inverters in three models of ZEEKR EV brand from Zhejiang Geely Holding Group (Geely), a top 10 global automaker. Since 2023, these power modules have been mass produced and shipped from HAIMOSIC (SHANGHAI) Co., Ltd. – a joint venture between ROHM and Zhenghai Group Co., Ltd. to Viridi E-Mobility Technology (Ningbo) Co., Ltd, a Tier 1 manufacturer under Geely.

    Geely and ROHM have been collaborating since 2018, beginning with technical exchanges, then later forming a strategic partnership focused on SiC power devices in 2021. This led to the integration of ROHM’s SiC MOSFETs into the traction inverters of three models: the ZEEKR X, 009, and 001. In each of these EVs, ROHM’s power solutions centered on SiC MOSFETs play a key role in extending the cruising range and enhancing overall performance.

    ROHM is committed to advancing SiC technology, with plans to launch 5th generation SiC MOSFETs in 2025 while accelerating market introduction of 6th and 7th generation devices. What’s more, by offering SiC in various forms, including bare chips, discrete components, and modules, ROHM is able to promote the widespread adoption of SiC technology, contributing to the creation of a sustainable society.

    Original – ROHM

    Comments Off on ROHM’s 4th Gen SiC MOSFET Chips Used in ZEEKR
  • onsemi Released Newest Generation Si and SiC Hybrid PIMs for Solar and ESS Applications

    onsemi Released Newest Generation Si and SiC Hybrid PIMs for Solar and ESS Applications

    3 Min Read

    onsemi released the newest generation silicon and silicon carbide hybrid Power Integrated Modules (PIMs) in an F5BP package, ideally suited to boost the power output of utility-scale solar string inverters or energy storage system (ESS) applications. Compared to previous generations, the modules offer increased power density and higher efficiencies within the same footprint to increase the total system power of a solar inverter from 300kW up to 350kW.

    This means a one-gigawatt (GW) capacity utility-scale solar farm using the latest generation modules can achieve an energy savings of nearly two megawatts (MW) per hour or the equivalent of powering more than 700 homes per year. Additionally, fewer modules are required to achieve the same power threshold as the previous generation, which can reduce power device component costs by more than 25%.

    With solar power having achieved the lowest levelized cost of energy (LCOE), it is increasingly becoming the go-to source for renewable power generation around the world. To compensate for solar power’s variability, utility operators are also adding large-scale battery energy storage systems (BESS) to ensure a stable energy flow to the grid. To support this combination of systems, manufacturers and utilities require solutions that offer maximum efficiency and reliable power conversion. Every 0.1% of efficiency improvement can equate to a quarter of a million dollars in annual operational savings for every one gigawatt of installed capacity.

    “As a variable energy source dependent on sunlight, continual advances in increasing system efficiencies, reliability and advanced storage solutions are needed to be able to maintain the stability and reliability of global grids during peak and off-peak power demand,” said Sravan Vanaparthy, vice president, Industrial Power Division, Power Solutions Group, onsemi. “A more efficient infrastructure increases adoption and assures us that, as more solar power generation is built out, less energy is wasted and pushes us forward on a path away from fossil fuels.”

    The F5BP-PIMs are integrated with 1050V FS7 IGBT and the 1200V D3 EliteSiC diode to form a foundation that facilitates high voltage and high current power conversion while reducing power dissipation and increasing reliability. The FS7 IGBTs offer low turn-off losses and reduce switching losses by up to 8%, while the EliteSiC diodes provide superior switching performance and lower voltage flicker by 15% compared to previous generations.

    These PIMs employ an innovative I-type Neutral Point Clamp (INPC) for the inverter module and a flying capacitor topology for the boost module. The modules also use an optimized electrical layout and advanced Direct Bonded Copper (DBC) substrates to reduce stray inductance and thermal resistance. In addition, a copper baseplate further decreases thermal resistance to the heat sink by 9.3%, ensuring the module remains cool under high operational loads. This thermal management is crucial in maintaining the efficiency and longevity of the modules, making them highly effective for demanding applications that require reliable and sustained power delivery.

    Original – onsemi

    Comments Off on onsemi Released Newest Generation Si and SiC Hybrid PIMs for Solar and ESS Applications
  • EPC to Showcase Advanced GaN Power Solutions at PCIM Asia 2024

    EPC to Showcase Advanced GaN Power Solutions at PCIM Asia 2024

    3 Min Read

    EPC will participate in PCIM Asia 2024. The event will take place from August 28-30 in Shenzhen, China. Attendees are invited to visit EPC at Hall 11, Stand F01 to explore the industry’s most comprehensive portfolio of GaN power conversion solutions.

    See How GaN is Powering the Future

    GaN power semiconductors are used in fast-charging applications for consumer electronics, aerospace and defense applications, satellites, high density AI servers, drones, robots, autonomous vehicles, telecommunications equipment and medical electronics, among other innovative technologies.

    • AI servers, critical for processing vast amounts of data in real-time, require power-efficient and high-speed electronics that GaN technology can deliver.
    • Humanoid robotics require lightweight, compact, and highly responsive components. GaN enables more agile and intelligent robots that can perform complex tasks with greater precision.
    • The shift toward electric vehicles (EVs) and advanced driver-assistance systems (ADAS) requires power solutions that are not only highly efficient but also capable of handling the increased power demands. GaN’s superior efficiency, compactness, and thermal performance make it the ideal choice for powering the future of transportation.

    EPC is uniquely positioned to support these markets with its pioneering GaN technology. EPC’s innovative solutions not only offer superior performance but also drive advancements in these critical sectors, enabling businesses to realize their full potential in a rapidly evolving technological landscape.

    Visit EPC at PCIM Asia to discover how EPC’s GaN technology can power your next breakthrough—stop by the booth to explore our latest innovations and speak with our experts.

    Explore Booth (Hall 11, Stand F01)

    At the EPC booth, visitors will experience firsthand how GaN FETs and ICs enable higher efficiency, smaller size and weight, and lower costs in applications such as DC-DC converters for high power density AI servers, motor drives for eMobility, robotics, and drones, and more.

    • Use the Interactive Wall of GaN to select the ideal GaN FET or IC for your application
    • Connect with EPC’s team of experts to gain insight into the ‘GaN First Time Right™ Design Process. Attendees will gain valuable knowledge and tools to enhance their projects and drive efficiency to new levels.
    • Meet the Robots: “Chip”, the robot dog, and his robotic friends demonstrate GaN-based DC-DC, lidar, and motor drive solutions for advanced robotics.

    Schedule a Meeting: Learn from GaN Experts and discover strategies to optimize your power systems. To schedule a meeting during PCIM Asia contact renee.yawger@epc-co.com

    Conference Sessions: Attend technical sessions to gain insights from industry leaders into the latest trends and advancements in GaN power conversion technology.

    • The Future of Untethered Robotics: GaN-Powered Solutions for Mobility, AI, and Machine Vision
      Presenter: Alex Lidow, Ph.D.
    • Comprehensive Board Level Temperature Cycling Lifetime Projection of WLCSP GaN Power Devices
      Presenter: Shengke Zhang, Ph.D.
    • Comparison of Board-side and Back-side Thermal Management Techniques for eGAN® FETs in a Half-Bridge Configuration
      Presenter: Adolfo Herrera, Ph.D.
    • Validating Duty Cycle-Based Repetitive Gate and Drain Transient Overvoltage Specifications for GaN HEMTsHost: Bodo’s Power Systems
      Presenter: Shengke Zhang, Ph.D.

    “We are thrilled to participate in PCIM Asia and showcase our cutting-edge GaN technology”, said Nick Cataldo, VP of Sales and Marketing at EPC. “We look forward to demonstrating how our solutions are transforming industries by enabling higher efficiency, smaller size, and lower costs.”

    Original – Efficient Power Conversion

    Comments Off on EPC to Showcase Advanced GaN Power Solutions at PCIM Asia 2024
  • SemiQ Adds S7 Package to QSiC™ Family of 1200V HB MOSFET and Schottky Diode SiC Power Modules

    SemiQ Adds S7 Package to QSiC™ Family of 1200V HB MOSFET and Schottky Diode SiC Power Modules

    3 Min Read

    SemiQ Inc announced the addition of an S7 package to its QSiC™ family of 1200V, half-bridge MOSFET and Schottky diode SiC power modules. The parts further enhance design flexibility for power engineers by providing compact, high-efficiency, high-performance options for new designs while supporting drop-in-replacement in legacy systems that require more efficient operation.

    This latest announcement sees the availability of a 529A MOSFET module (GCMX003A120S7B1), a 348A MOSFET module (GCMX005A120S7B1), and two low-noise SiC Schottky diode half-bridge modules (GHXS300A120S7D5 and GHXS400A120S7D5) in an S7 package with industry-standard 62.0mm footprints and a height of just 17.0mm.

    The new package addresses the size, weight and power requirements of demanding applications ranging from induction heaters, welding equipment and uninterruptible power supplies (UPS) to photovoltaic and wind inverters, energy storage systems, high-voltage DC-DC converters and battery charging systems for electric vehicles (EVs). As well as the compact form factor of the modules themselves, high-efficiency, low-loss operation helps to reduce system heat dissipation and supports the use of smaller heatsinks.

    “Our aim is to provide a comprehensive portfolio of SiC technologies that allow designers to optimize the efficiency, performance and size of today’s demanding applications,” says Dr. Timothy Han, President at SemiQ. “Adding new package option to our 1200V QSiC MOSFET and SiC diode module families further extends the choices available to designers who need to create completely new applications or who are looking to upgrade legacy systems without significant redesign.”

    Crafted from high-performance ceramics, SemiQ’s modules achieve exceptional performance levels and support increased power density and more compact designs – especially in high-frequency and high-power environments.

    To guarantee a stable gate threshold voltage and premium gate oxide quality for each module, SemiQ conducts gate burn-in testing at the wafer level. In addition to the burn-in test, which contributes to mitigating extrinsic failure rates, various stress tests – including gate stress, high-temperature reverse bias (HTRB) drain stress, and high humidity, high voltage, high temperature (H3TRB) – are employed to attain the necessary automotive and industrial grade quality standards. All parts have undergone testing surpassing 1400V.

    Part numbers of SemiQ’s new 1200V modules in S7 packages are shown below.

    Part NumbersCircuit ConfigurationRatings, PackagesRdsOn mΩ
    GCMX003A120S7B1S7 Half-bridge1200V/529A, B13.0
    GCMX005A120S7B1S7 Half-bridge1200V/348A, B14.9
    GHXS300A120S7D5S7 Half-bridge1200V/300A, D5
    GHXS400A120S7D5S7 Half-bridge1200V/400A, D5

    Original – SemiQ

    Comments Off on SemiQ Adds S7 Package to QSiC™ Family of 1200V HB MOSFET and Schottky Diode SiC Power Modules
  • SweGaN Secures Multiple Frame Agreements for QuanFINE® GaN-on-SiC Epitaxial Wafers

    SweGaN Secures Multiple Frame Agreements for QuanFINE® GaN-on-SiC Epitaxial Wafers

    2 Min Read

    SweGaN AB, a European semiconductor manufacturer that develops and produces custom engineered Gallium Nitride on Silicon Carbide (GaN-on-SiC) epitaxial wafers, reported orders for its benchmark QuanFINE® epiwafers worth 17 MSEK in the first half of 2024, including three large frame agreements from undisclosed major Telecom and Defense market players. The company reported a 100% YoY order increase and began deliveries from its new facility in Linköping, Sweden, marking significant progress in its scale-up journey.

    In additional notable news, the semiconductor manufacturer announces a newly completed QuanFINE epiwafer customer qualification with a device manufacturer.

    In the last two years, SweGaN has displayed an exciting operational transformation in alignment with its growth strategy and global demands for GaN-on-SiC epiwafers. Securing a Series A investment round, the company has scaled its organization, established a streamlined team, and deployed a new high-capacity production facility to drive its growth strategy and future KPIs.

    – “Today we celebrate three significant milestones that signal SweGaN’s transition from a pure R&D company to a rigorous global semiconductor manufacturer.” says Dr. Jr-Tai Chen, CEO at SweGaN.

    – “Currently, there is a strong momentum in the Telecom industry to upgrade technology from 5G to 5G Advanced, continues Chen. SweGaN’s patented QuanFINE® buffer-free GaN-on-SiC material is well-suited to meet the demanding technical requirements of the new technology, particularly in terms of device efficiency and thermal management. This applies to the new Telecom standard 5G Advanced, as well as the strong demands for enhanced sensing capability in Defense applications. The new framework orders will accelerate product development and production ramp-up enabling SweGaN to tap the market opportunities in both the Telecom and Defense sectors.”

    With SweGaN’s new production facility in full swing, the company has the tools to fully embrace its ambitious scale-up strategy and significantly boost manufacturing capacity of next-generation GaN-on-SiC engineered epitaxial wafers. Simultaneously, the company aims to continue to innovate through new R&D initiatives and deepen partnerships with suppliers and customers to establish resilient supply chains.

    – “I take immense pride in our synergistic team, in both successfully qualifying SweGaN’s first epiwafer product with a device manufacturer and executing on the significant undertaking of bringing the the new high-capacity wafer production facility into operation, from planning to deployment,” continues Chen.

    Original – SweGaN

    Comments Off on SweGaN Secures Multiple Frame Agreements for QuanFINE® GaN-on-SiC Epitaxial Wafers
  • MCC Semi Expands 650V SiC MOSFET Portfolio

    MCC Semi Expands 650V SiC MOSFET Portfolio

    1 Min Read

    MCC Semi is expanding advanced silicon carbide portfolio with six new 650V SiC MOSFETs. Designed for demanding applications, these components boast high-voltage capability and an on-resistance range of 25 mΩ to 100 mΩ. They’re also equipped with avalanche ruggedness, low switching losses, and enable high-speed switching with a low gate charge.

    Their efficiency-boosting design and TO247 package deliver superior thermal performance, while the 3-pin or 4-pin (Kelvin-source pin) options enhance their versatility. These new MOSFETs minimize losses without compromising power handling, making them an intelligent choice for various industrial and telecommunications systems.

    Features & Benefits:

    • High switching speed with low gate charge
    • Low switching losses
    • Wide on-resistance selection ranging from 25 mΩ to 100 mΩ
    • Avalanche ruggedness for enhanced durability
    • TO247 3-pin and 4-pin package options
    • Kelvin-source connection for precision (4-pin only)

    Original – Micro Commercial Components

    Comments Off on MCC Semi Expands 650V SiC MOSFET Portfolio
  • Vitesco Technologies Selects CoolGaN™ of Infineon Technologies to Boost Power Efficiency DCDC Converter

    Vitesco Technologies Selects CoolGaN™ of Infineon Technologies to Boost Power Efficiency DCDC Converter

    4 Min Read

    DCDC converters are essential in any electric or hybrid vehicle to connect the high-voltage battery to the low-voltage auxiliary circuits. This includes 12 V power headlights, interior lights, wiper and window motors, fans, and at 48 V, pumps, steering drives, lighting systems, electrical heaters, and air conditioning compressors. In addition, the DCDC converter is important for developing more affordable and energy-efficient vehicles with an increasing number of low voltage functions.

    According to TechInsights, the global automotive DC-DC converter market size was valued at USD 4 billion in 2023 and is projected to grow to USD 11 billion by 2030, exhibiting a CAGR of 15 percent during the forecast period. Gallium nitride (GaN) in particular plays a crucial role here, as it can be used to improve the power density in DCDC converters and on-board chargers (OBC).

    For this reason, Vitesco Technologies, a leading supplier of modern drive technologies and electrification solutions, has selected GaN to improve the power efficiency of its Gen5+ GaN Air DCDC converter. The CoolGaN™ Transistors 650 V from Infineon Technologies AG significantly improve the overall system performance while minimizing system cost and increasing ease of use. As a result, Vitesco created a new generation of DCDC converters that set new standards in power density (efficiency of over 96%) and sustainability for power grids, power supplies, and OBCs.

    The advantages of GaN-based transistors in high-frequency switching applications are considerable, but even more important is the high switching speed, which has been increased from 100 kHz to over 250 kHz. This enables very low switching losses, even in hard-switched half-bridges, with minimized thermal and overall system losses.

    In addition, Infineon’s CoolGaN Transistors feature high turn-on and turn-off speeds and are housed in a top-cooled TOLT package. They are air-cooled, eliminating the need for liquid cooling and thereby reducing overall system costs. The 650 V devices also improve power efficiency and density, enabling an output of 800 V. In addition, they feature an ON-resistance (R DS(on)) of 50 mΩ, a transient drain-to-source voltage of 850 V, an I DS,max of 30 A, and an I DSmax,pulse of 60 A.

    “We are delighted to see industry leaders like Vitesco Technologies using our GaN devices and innovating with their applications,” said Johannes Schoiswohl, Senior Vice President & General Manager, GaN Systems Business Line Head at Infineon. “The ultimate value of GaN is demonstrated when it changes paradigms, as in this example of moving from a liquid-cooled system to an air-cooled system.”

    With GaN Transistors, Vitesco Technologies was able to design its Gen5+ GaN Air DCDC converters with passive cooling, which reduces the system’s overall cost. The GaN devices also allow for simplified converter design and mechanical integration. As a result, the DCDC converters can be flexibly positioned in the vehicle, reducing the workload for manufacturers.

    The use of GaN also allows the power of the converters to be scaled up to 3.6 kW and the power density to be increased to over 4.2 kW/l. The Gen5+ GaN Air DCDC converters offer an efficiency of over 96 percent and improved thermal behavior compared to the Gen5 Liquid-Cooled converters. They provide a two-phase output of 248 A at 14.5 V continuous.

    The phases can be combined to achieve the maximum output power. Still, it is also possible to switch off one phase under partial load conditions and interleave the switching frequency between the two phases. In addition, by switching the input of two phases in series, the converters based on the CoolGaN power transistors 650 V can be used to implement 800 V architectures without exceeding the maximum blocking voltage of the device. The converters also feature an isolated half-bridge topology consisting of a GaN-based half-bridge, a fully isolated transformer, and an active rectifier unit for each phase.

    Original – Infineon Technologies

    Comments Off on Vitesco Technologies Selects CoolGaN™ of Infineon Technologies to Boost Power Efficiency DCDC Converter
  • Infineon Technologies Opened World’s Largest SiC Power Semiconductor Fab in Malaysia

    Infineon Technologies Opened World’s Largest SiC Power Semiconductor Fab in Malaysia

    5 Min Read

    As global decarbonization efforts drive demand for power semiconductors, Infineon Technologies AG has officially opened the first phase of a new fab in Malaysia that will become the world’s largest and most competitive 200-millimeter silicon carbide (SiC) power semiconductor fab. Malaysian Prime Minister YAB Dato’ Seri Anwar Ibrahim and Chief Minister of the state of Kedah YAB Dato’ Seri Haji Muhammad Sanusi Haji Mohd Nor joined Infineon CEO Jochen Hanebeck, to symbolically launch production.

    The highly efficient 200-millimeter SiC power fab will strengthen Infineon’s role as the global leader in power semiconductors. The first phase of the fab, with an investment volume of two billion euros, will focus on the production of silicon carbide power semiconductors and will include gallium nitride (GaN) epitaxy. SiC semiconductors have revolutionized high-power applications because they switch electricity even more efficiently and enable even smaller designs.

    SiC semiconductors increase efficiency in electric vehicles, fast charging stations and trains as well as renewable energy systems and AI data centers. 900 high-value jobs will be created already in the first phase. The second phase, with an investment of up to five billion euros, will create the world’s largest and most efficient 200-millimeter SiC power fab. Overall, up to 4.000 jobs will be created with the project.

    “New generations of power semiconductors based on innovative technology such as silicon carbide are an absolute prerequisite to achieving decarbonization and climate protection. Our technology increases the energy efficiency of ubiquitous applications such as electric cars, solar and wind power systems and AI data centers. We are therefore investing in the largest and most efficient high-tech SiC production facility in Malaysia, backed by strong customer commitments,” said Jochen Hanebeck, CEO of Infineon Technologies AG. “Since the demand for semiconductors will constantly rise, the investment in Kulim is highly attractive to our customers, who are backing it with their prepayments. It also increases the resilience of the supply chain for critical components needed for the green transition.”

    “Infineon’s remarkable project reinforces Malaysia’s position as a rising major global semiconductor hub” says Malaysian Prime Minister YAB Dato’ Seri Anwar Ibrahim. “This major investment, which will locate the world’s largest and most competitive SiC power fab on our shores, will create jobs and opportunities, as well as attract suppliers, universities and top talent. Moreover, it will support Malaysia’s efforts to protect our climate by boosting electrification and increasing the efficiency of many applications, including electric cars and renewable energy. Thus, technology made in Malaysia will become a central part of global decarbonization efforts in the future.”

    “Infineon’s deeply rooted presence in Kulim is a testament to the region’s potential as a hub for high-tech industries,” says Kedah Chief Minister YAB Muhammad Sanusi Md Nor. “This investment will not only create high-value job opportunities for the local community, it will also catalyze economic growth in the region. We are committed to continue providing top business conditions in Kedah and supporting Infineon’s efforts to establish a leading semiconductor facility in Kulim, which will have a positive ripple effect on the entire ecosystem.”

    Infineon has secured design wins with a total value of approximately five billion euros and has received approximately one billion euros in prepayments from existing and new customers for the ongoing expansion of the Kulim 3 fab. Notably, these design wins include six OEMs in the automotive sector as well as customers in the renewable energy and industrial segments.

    Kulim 3 will be closely connected to the Infineon site in Villach, Austria, Infineon’s global competence center for power semiconductors. Infineon already increased capacity for SiC and GaN power semiconductors in Villach in 2023. As “One Virtual Fab” for wide-bandgap technologies, both manufacturing sites now share technologies and processes which allow for fast ramping and smooth and highly efficient operation. The project also offers a high grade of resilience and flexibility, which will ultimately benefit Infineon’s customers.

    The expansion will benefit from the excellent economies of scale already achieved for 200-millimeter manufacturing in Kulim. It will complement Infineon’s leading position in silicon, based on 300-millimeter manufacturing in Villach and Dresden. Thus, Infineon is strengthening its technological leadership across the entire spectrum of power semiconductors, in silicon as well as SiC and GaN.

    In addition, the investment in wide-bandgap capacity in Kulim strengthens the local ecosystem and proves that Infineon is a reliable partner within the growing semiconductor hub Malaysia. Infineon’s operations in Malaysia started as early as 1973 in Melaka. In 2006, the company opened Asia’s first frontend fab in Kulim. Currently, Infineon employs more than 16.000 highly skilled people in Malaysia.

    The Kulim 3 fab will be powered by 100% green electricity and will employ the latest energy efficiency measures to support Infineon’s goal of carbon neutrality. To avoid emissions, Infineon will use a state-of-the-art abatement system and green refrigerants that combine high efficiency with extremely low global warming potential. Other measures to ensure sustainable operations include state-of-the-art recycling of indirect materials and state-of-the-art water efficiency and recycling processes. Infineon is working towards recognition with the renowned Green Building Index certification.

    Original – Infineon Technologies

    Comments Off on Infineon Technologies Opened World’s Largest SiC Power Semiconductor Fab in Malaysia