• Vincotech Unveiled a GaN Power Module

    Vincotech Unveiled a GaN Power Module

    1 Min Read

    Vincotech introduced a GaN-based power module which provides an effective solution for highly efficient power conversion in isolated DC/DC converters or DC/AC inverter stages. It offers a 2-in-1 solution, and can be utilized either as a 10mOhm H-Bridge or 5mOhm half-bridge.

    The module features E-mode GaN HEMTs chip technology, promoting high efficiency and power density, and is available in an industry-standard package with low stray loop inductance. It is compatible with external gate drives, offering engineers high design flexibility.

    Main benefits

    • Highest design flexibility with external gate driver, enabling slew rate control for low EMC
    • Low voltage overshoots due to integrated snubber capacitors
    • High power density and small footprint for soft switching above 500kHz
    • Kelvin source pin and low inductive gate loop for clean switching behavior

    Applications

    • DC fast charger
    • Solar inverter
    • UPS

    Original – Vincotech

    Comments Off on Vincotech Unveiled a GaN Power Module
  • onsemi Unveiled Power Solutions to Improve Energy Efficiency for Data Centers

    onsemi Unveiled Power Solutions to Improve Energy Efficiency for Data Centers

    3 Min Read

    As data centers become increasingly power-hungry to support the tremendous processing requirements of AI workloads, the need for boosting energy efficiency is paramount. The powerful combination of onsemi’s latest generation T10 PowerTrench® family and EliteSiC 650V MOSFETs create a solution that offers unparalleled efficiency and high thermal performance in a smaller footprint for data center applications.

    Compared to a typical search engine request, an AI-supported engine request requires more than 10x the power, leading to data center power needs expected to reach an estimated 1,000 TWh globally in less than two years. To process one AI-supported request, energy is converted four times from the grid to the processor, which can result in an energy loss of approximately 12%.

    Using the T10 PowerTrench family and EliteSiC 650V solution, data centers are able to reduce power losses that occur by an estimated 1%. If implemented in data centers globally, the solution could reduce energy consumption by 10 TWh annually or the equivalent of the energy required to fully power nearly one million homes per year.

    The EliteSiC 650V MOSFET offers superior switching performance and lower device capacitances to achieve higher efficiency in data centers and energy storage systems. Compared to the previous generation, these new generation silicon carbide (SiC) MOSFETs have halved the gate charge and reduced both the energy stored in output capacitance (Eoss) and the output charge (Qoss) by 44%.

    With no tail current during turn-off and superior performance at high temperatures, they can also significantly reduce switching losses compared to super junction (SJ) MOSFETs. This allows customers to downsize system components while increasing the operating frequency, resulting in an overall reduction in system costs. 

    Separately, the T10 PowerTrench Family is engineered to handle high currents, crucial for DC-DC power conversion stages, and offers increased power density and superior thermal performance in a compact footprint. This is achieved through a shield gate trench design, which boasts an ultra-low gate charge and an RDS (on) of less than 1 milliohm. Additionally, the soft recovery body diode and lower Qrr effectively minimizes ringing, overshoots, and electrical noise to ensure optimal performance, reliability, and robustness under stress. The T10 PowerTrench Family also meets the stringent standards required for automotive applications.

    The combined solution also meets the stringent Open Rack V3 (ORV3) base specification required by hyperscale operators to support the next generation of high-power processors.  

    “AI and electrification are reshaping our world and skyrocketing power demands. Accelerating innovation in power semiconductors to improve energy efficiency is key to enabling these technological megatrends. This is how we power the future responsibly,” said Simon Keeton, group president, Power Solutions Group, onsemi. “Our latest solution can significantly reduce power losses that occur during the energy conversion process and have a meaningful impact on the demands for the next generation of data centers.”

    Original – onsemi

    Comments Off on onsemi Unveiled Power Solutions to Improve Energy Efficiency for Data Centers
  • Toshiba Started Mass Production of a 3rd Gen 1200 V SiC MOSFET Module

    Toshiba Started Mass Production of a 3rd Gen 1200 V SiC MOSFET Module

    2 Min Read

    Toshiba Electronic Devices & Storage Corporation has started mass production of a 3rd generation silicon carbide (SiC) 1200 V and drain current (DC) rating 400 A of SiC MOSFET module “MG400Q2YMS3” for industrial equipment and has expanded its lineup.

    The new product MG400Q2YMS3 offers low conduction loss with low drain-source on-voltage (sense) of 0.9 V (typ.). It also offers low switching loss with both turn-on switching loss and turn-off switching loss of 13 mJ (typ.). These help to reduce power loss of equipment and the size of cooling device.

    MG400Q2YMS3 has a low stray inductance of 12 nH (typ.) and is capable of high-speed switching. In addition, it suppresses surge voltage in switching operation. Thus, it is available for high frequency isolated DC-DC converter.

    Toshiba’s SiC MOSFET module of 2-153A1A package has a lineup of five existing products, MG250YD2YMS3 (2200 V / 250 A), MG400V2YMS3 (1700 V / 400 A), MG250V2YMS3 (1700 V / 250 A), and MG600Q2YMS3 (1200 V / 600 A), including new products. This provides a wider range of product selection.

    Toshiba will continue to meet the needs for high efficiency and the downsizing of industrial equipment.

    Applications

    Industrial equipment

    • Auxiliary power supply for railway vehicles
    • Renewable energy power generation systems
    • Motor control equipment for industrial equipment
    • High frequency DC-DC converters, etc.

    Features

    • Low drain-source on-voltage (sense):
      VDS(on)sense=0.9 V (typ.) (ID=400 A, VGS=+20 V, Tch=25 °C)
    • Low turn-on switching loss:
      Eon=13 mJ (typ.) (VDD=600 V, ID=400 A, Tch=150 °C)
    • Low turn-off switching loss:
      Eoff=13 mJ (typ.) (VDD=600 V, ID=400 A, Tch=150 °C)
    • Low stray inductance:
      LsPN=12 nH (typ.)

    Original – Toshiba

    Comments Off on Toshiba Started Mass Production of a 3rd Gen 1200 V SiC MOSFET Module
  • Infineon Technologies Announced CoolGaN Bidirectional Switch and CoolGaN Smart Sense

    Infineon Technologies Announced CoolGaN Bidirectional Switch and CoolGaN Smart Sense

    3 Min Read

    Infineon Technologies AG announced two new CoolGaN™ product technologies, CoolGaN bidirectional switch (BDS) and CoolGaN Smart Sense. CoolGaN BDS provides exceptional soft- and hard-switching behavior, with bidirectional switches available at 40 V, 650 V and 850 V. Target Applications of this family include mobile device USB ports, battery management systems, inverters, and rectifiers.

    The CoolGaN Smart Sense products feature lossless current sensing, simplifying design and further reducing power losses, as well as transistor switch functions integrated into one package. They are ideal for usage in consumer USB-C chargers and adapters.

    The CoolGaN BDS high voltage will be available at 650 V and 850 V and feature a true normally-off monolithic bi-directional switch with four modes of operation. Based on the gate injection transistor (GIT) technology, the devices have two separate gates with substrate terminal and independent isolated control. They utilize the same drift region to block voltages in both directions with outstanding performance under repetitive short-circuit conditions.

    Applications can benefit by using one BDS instead of four conventional transistors, resulting in higher efficiency, density, and reliability. Furthermore, significant cost savings are achieved. The devices optimize performance in the replacement of back-to-back switches in single-phase H4 PFC and HERIC inverters and three-phase Vienna rectifiers. Additional implementations include single-stage AC power conversion in AC/DC or DC/AC topologies.

    The CoolGaN BDS 40 V is a normally-off, monolithic bi-directional switch based on Infineon’s in-house Schottky Gate GaN technology. It can block voltages in both directions, and through a single-gate and common-source design, it is optimized to replace back-to-back MOSFETs used as disconnect switches in battery-powered consumer products. The first 40 V CoolGaN BDS product has a 6 mΩ R DS(on), with a range of products to follow. Benefits of using 40 V GaN BDS vs. back-to-back Si FETs include 50 – 75 percent PCB area savings and a reduction of power losses by more than 50 percent, all at a lower cost.

    The CoolGaN Smart Sense products feature 2 kV electrostatic discharge withstand and can connect to controller current sense for peak current control and overcurrent protection. The current sense response time is ~200 ns, which is equal or less than common controller blanking time for ultimate compatibility.

    Implementing the devices results in increased efficiency and cost savings. At a higher R DSs(on) of e.g. 350 mΩ, the CoolGaN Smart Sense products offer similar efficiency and thermal performance at lower cost compared to traditional 150mΩ GaN transistors. Moreover, the devices are footprint compatible to Infineon’s transistor-only CoolGaN package, eliminating the need for layout rework and PCB respin, and further facilitating design with Infineon’s GaN devices.

    Engineering samples of the CoolGaN BDS 40 V are available now for 6 mΩ and will follow in Q3 2024 for 4 mΩ and 9 mΩ. Samples of the CoolGaN BDS 650 V will be available in Q4 2024, and 850 V will follow early 2025. CoolGaN Smart Sense samples will be available in August 2024. Further information is available here: https://www.infineon.com/cms/en/product/promopages/GaN-innovations/

    Original – Infineon Technologies

    Comments Off on Infineon Technologies Announced CoolGaN Bidirectional Switch and CoolGaN Smart Sense
  • Cambridge GaN Devices Brings Two New ICeGaN™ Packages to PCIM Europe 2024

    Cambridge GaN Devices Brings Two New ICeGaN™ Packages to PCIM Europe 2024

    2 Min Read

    Cambridge GaN Devices (CGD) announced two new packages for the company’s ICeGaN™ family of GaN power ICs that offer enhanced thermal performance and simplify inspection.  Variants of the well-proven DFN style, both packages are extremely rugged and reliable.

    Developed for CGD, the DHDFN-9-1 (Dual Heat-spreader DFN) is a thin, dual-side cooled package with a small, 10×10 mm footprint and wettable flanks to simplify optical inspection. It offers low thermal resistance (Rth(JC), and can be operated with bottom-side, top-side and dual-side cooling, offering flexibility in design and out-performing the often-used TOLT package in top-side and, especially, dual-side cooled configurations.

    The DHDFN-9-1 package has been designed with dual-gate pinout to facilitate optimal PCB layout and simple paralleling, enabling customers to address applications up to 6 kW with ease. The BHDFN-9-1 (Bottom Heat-spreader DFN) is a bottom-side cooled package, also with wettable flanks for easy inspection. Thermal resistance is 0.28 K/W, matching or exceeding other leading devices. Measuring 10×10 mm, the BHDFN is smaller than the commonly-used TOLL package yet shares a similar footprint, hence a common layout with TOLL-packaged GaN power ICs is possible for ease of use and evaluation.

    Nare Gabrielyan | Product Marketing Manager, CGD

    “These new packages are part of our strategy to enable customers to use our ICeGaN GaN power ICs at higher power levels. Servers, data centres, inverters/motor drives, micro-inverters and other industrial applications are all beginning to enjoy the power density and efficiency benefits that GaN brings, but they are also more demanding. Therefore, it is essential for such applications that devices are also rugged and reliable, and easy to design in. These attributes are inherent in ICeGaN, and are supported and extended by the new packages.”

    Improving thermal resistance performance has several benefits. First, more power output is available at the same RDS(on) . Devices also run at cooler temperatures for the same power, so less heatsinking is required, resulting in reduced system costs. Lower operating temperatures also lead to higher reliability and longer lifetimes. Finally,  if cost is the constraint for the application, designers can use a lower cost part with a higher RDS(on) and still achieve the required power output.

    The new packages will be shown for the first time publicly at the upcoming PCIM exhibition on CGD’s booth # 7 643, Nürnberg Messe, Nuremberg, Germany, 11-13th June 2024.

    Original – Cambridge GaN Devices

    Comments Off on Cambridge GaN Devices Brings Two New ICeGaN™ Packages to PCIM Europe 2024
  • NXP Semiconductors Collaborates with ZF on Next-Gen SiC-based Traction Inverters for EVs

    NXP Semiconductors Collaborates with ZF on Next-Gen SiC-based Traction Inverters for EVs

    3 Min Read

    NXP Semiconductors N.V. announced a collaboration with ZF Friedrichshafen AG, a global leader in e-mobility, on next-generation SiC-based traction inverter solutions for electric vehicles (EVs). By leveraging NXP’s advanced GD316x high-voltage (HV) isolated gate drivers, the solutions are designed to accelerate the adoption of 800-V and SiC power devices. Safe, efficient and higher performance traction inverters enabled by the GD316x product family can be designed to extend EV range and reduce the number of charging stops while lowering system level costs for OEMs.

    The collaboration between ZF and NXP is a significant step towards accelerating the electrification of the automotive industry, and creating more safe, sustainable, and energy-efficient EVs for the future.

    “We look forward to working with NXP to raise the bar for the capabilities and performance of our 800-V traction inverter solutions, which will help us achieve our goals of reducing emissions and promoting sustainability,” said Dr. Carsten Götte, SVP Electrified Powertrain Technology at ZF. “The combination of ZF’s expertise in motor control and power electronics with NXP’s GD316x gate driver family enables us to provide our latest SiC-based traction inverters with higher power and volume density, efficiency and differentiation, and provide our customers with significant safety, efficiency, range and performance improvements.”

    Traction inverters are a critical component of an EV’s electric powertrain, converting DC voltage from the battery into a time-varying AC voltage, which drives the vehicle’s motor. As traction inverters now migrate to SiC-based designs, the SiC power devices need to be paired with HV isolated gate drivers to harness the advantages such as higher switching frequency, lower conduction losses, better thermal characteristics and higher robustness at high voltages, compared to previous generation silicon-based IGBT and MOSFET power switches.

    The GD316x family of advanced, functionally safe, isolated, high voltage gate drivers incorporates a number of programmable control, diagnostic, monitoring, and protection features, enhanced to drive the latest SiC power modules for automotive traction inverter applications. Its high level of integration allows a smaller footprint and simplifies the system design.

    The outstanding capabilities reduce Electromagnetic Compatibility (EMC) noise while also reducing switching energy losses for better efficiency. Fast short-circuit protection times (< 1 µsec) in combination with powerful and programmable gate drive schemes optimize the performance of the traction inverter’s SiC power modules.

    “Together with ZF, we are developing next-generation power electronics for future EVs,” said Robert Li, Senior Vice President and General Manager, Electrification at NXP. “Our gate driver family implements a number of outstanding features to both protect and unleash the benefits of high-voltage SiC power switches, making them an ideal choice for ZF’s new SiC-based traction inverter solutions. This collaboration is a testament to our commitment to delivering state-of-the-art solutions that enable OEMs to achieve their EV performance and sustainability goals.”

    ZF traction inverters, enabled by NXP’s GD316x product family, are already on the road.

    Original – NXP Semiconductors

    Comments Off on NXP Semiconductors Collaborates with ZF on Next-Gen SiC-based Traction Inverters for EVs
  • STMicroelectronics and Geely Signed a Long-Term SiC Supply Agreement

    STMicroelectronics and Geely Signed a Long-Term SiC Supply Agreement

    4 Min Read

    STMicroelectronics and Geely Auto Group have signed a long-term Silicon Carbide (SiC) supply agreement to accelerate their existing cooperation on SiC devices. Under the terms of this multi-year contract, ST will provide multiple Geely Auto brands with SiC power devices for mid-to-high-end battery electric vehicles (BEVs), boosting Geely Auto’s NEV transformation strategy with improved performance, faster charging speeds and extended driving range.

    In addition, building on their longstanding cooperation across multiple automotive applications, Geely and ST have established a joint lab to exchange information and explore innovative solutions related to automotive Electronics/Electrical (E/E) architectures (i.e. in-vehicle infotainment, smart cockpit systems), advanced driver assistance (ADAS), and NEVs.

    Geely Auto Group has adopted ST’s third generation SiC MOSFET devices in electric traction inverters. The traction inverter is the core of electric powertrains and SiC MOSFETs maximize their efficiency. The combination of advanced inverter design with high-efficiency power semiconductors, like SiC, is the key to superior electric vehicle performance.

    “We are very pleased to establish a win-win cooperation with STMicroelectronics, to empower each other and fully utilize our respective advantages and resources.I believe that through the form of innovation joint lab, Geely and ST can deepen our cooperation, achieve mutual benefit, and accelerate the development and implementation of innovative technologies in Geely Auto,” said Li Chuanhai, President of Electronic and Electrical Center of Geely Automotive Central Research Institute.

    “We are pleased to have a deep cooperation with global automotive semiconductor leader STMicroelectronics to establish an innovation joint lab. Both sides will deepen long-term cooperation in fields such as smart driving to jointly focus on customer needs, accelerate the implementation of new products and solutions, and shape an efficient cooperation mode. I believe that this cooperation will be beneficial for both parties to conduct more forward-looking technical research based on the development trends of smart, electrified, and connected cars. Geely is delighted to leverage STMicroelectronics’ leading automotive business solutions to be well positioned in product performance, system integration, and overall market competitiveness,” said Fu Zhaohui, Director of the Electronic and Electrical Center of Geely Automotive Central Research Institute.

    “Geely Auto, is a shining example of automotive innovation in China, making rapid progress in car electrification and digitalization, while expanding its presence in the global market. This long-term SiC supply agreement and the joint lab establishment mark a significant step forward in our long-established cooperation,” said Henry Cao, Executive Vice President of Sales & Marketing, China Region, STMicroelectronics. “China is the biggest NEV market worldwide and a leading innovator. Our local competence centers and joint labs with our customers across the value chain of automotive allow ST to better support automotive innovation and transformation in China.”

    As a leading global automobile manufacturer and China’s top automotive brand, Geely Auto sold a total of 1.68 million vehicles in 2023, with NEV sales reaching 480,000 units, accounting for 28% of the Company’s total sales for the year. This NEV sales volume represents a year-over-year increase of 48%, demonstrating Geely Auto’s successful transition towards NEV and its growing impact in the industry.

    With a state-of-the-art SiC manufacturing process and a completely vertically integrated supply-chain, ST provides SiC devices for a wide range of EV applications including traction inverter, OBC (onboard charger), DC-DC converter, EV charging station and e-compressor application, significantly enhancing the performance, efficiency, and range of NEVs. In June 2023, ST and Sanan Optoelectronics, a market leader in compound semiconductors in China, announced the creation of a new 200mm SiC device manufacturing JV in Chongqing, China. This facility will better support the needs of Chinese customers as ST collaborates with more leading Chinese carmakers, industrial customers, and solution providers in SiC, to accelerate the pace of electrification in China.

    Original – STMicroelectronics

    Comments Off on STMicroelectronics and Geely Signed a Long-Term SiC Supply Agreement
  • Infineon Technologies Expands 650V Discrete CoolSiC™ MOSFETs Portfolio with Thin-TOLL 8x8 and TOLT Packages

    Infineon Technologies Expands 650V Discrete CoolSiC™ MOSFETs Portfolio with Thin-TOLL 8×8 and TOLT Packages

    2 Min Read

    The electronics industry is witnessing a significant shift towards more compact and powerful systems, driven by technological advancements and a growing focus on decarbonization efforts. With the introduction of the Thin-TOLL 8×8 and TOLT packages, Infineon Technologies AG is actively accelerating and supporting these trends. They enable a maximum utilization of the PCB mainboard and daughter cards, while also taking the system’s thermal requirements and space restrictions into account.

    The company is now expanding its portfolio of CoolSiC™ MOSFET discretes 650 V with two new product families housed in the Thin-TOLL 8×8 and TOLT packages. They are based on the CoolSiC Generation 2 (G2) technology, offering significantly improved figures-of-merit, reliability, and ease-of-use. Both product families specifically target high and medium switching-mode power supplies (SMPS), including AI servers, renewable energy, EV chargers, and large home appliances.

    The Thin-TOLL package has a form factor of 8×8 mm and offers the best-in-class Thermal Cycling on Board (TCoB) capability on the market. The TOLT package is a top-side cooled (TSC) enclosure with a similar form factor to TOLL. Both package types offer developers several benefits: Using them in AI and server power supply units (PSU), for example, reduces the thickness and length of the daughter cards and allows for a flat heat sink.

    When used in microinverters, 5G PSU, TV PSU and SMPS, the Thin-TOLL 8×8 package allows for a minimization of the PCB area occupied by the power supply devices on the mainboard, while TOLT keeps the junction temperature of the devices under control, given that these applications typically use convection cooling. In addition, TOLT devices complete Infineon’s top-side cooled CoolSiC industrial portfolio, namely CoolSiC 750 V in Q-DPAK. They enable developers to reduce the PCB footprint occupied by SiC MOSFETs when the power to be delivered to the devices does not require a Q-DPAK package.

    The CoolSiC MOSFETs 650 V G2 in ThinTOLL 8×8 and TOLT are now available in R DS(on) from 20, 40, 50 and 60 mΩ. Additionally, the TOLT variant is also available with an R DS(on) of 15 mΩ. The product family will be expanded by a more granular portfolio by the end of 2024. More information is available at www.infineon.com/coolsic-gen2. Infineon will showcase the CoolSiC MOSFET 650 V Generation 2 at the PCIM in Nuremberg.

    Original – Infineon Technologies

    Comments Off on Infineon Technologies Expands 650V Discrete CoolSiC™ MOSFETs Portfolio with Thin-TOLL 8×8 and TOLT Packages
  • Toshiba Introduced a 1200 V SBD Embedded SiC MOSFET

    Toshiba Introduced a 1200V SBD Embedded SiC MOSFET

    3 Min Read

    Toshiba Electronic Devices & Storage Corporation has developed a Schottky barrier diode (SBD) embedded metal oxide semiconductor field effect transistor (MOSFET), a significant improvement over the current device structure, while maintaining high reliability and short-circuit ruggedness.

    A successful design modification introduces a barrier structure with varying depths in the device structure that maintains the reliability of the reverse conduction operation, the function of an integrated SBD, while suppressing the current leakage from the SBD part that causes destruction during short-circuiting. By making use of new design technology and optimizing the device structure, the new MOSFET achieves lower on-resistance (RonA), with about a 26% improvement over the current structure. 

    Power semiconductors play a central role in electricity supply and control. They cut energy consumption in all kinds of electronic equipment, and are an important tool for the realization of carbon neutrality. Continued demand expansion is expected from vehicle electrification and the miniaturization of industrial equipment.

    Against this background, SiC MOSFETs are seen as next-generation power semiconductors. They deliver better power energy conversion efficiency than Si MOSFETs, and their use has expanded rapidly in recent years. However, SiC MOSFETs have a reliability problem: increased RonA due to reverse conduction operation. Toshiba has now developed an SBD-embedded SiC MOSFET that operates in reverse conduction without increasing RonA.

    Reducing the RonA of SiC MOSFET simultaneously causes excess current flow through the MOSFET part during short-circuit operation, reducing the durability of short-circuit operation. However, enhancing the conduction of the embedded SBD to improve the reliability of reverse conduction operation increases its current leakage during short-circuit operation, which also decreases the durability of short-circuit operation.

    Introducing a deep barrier structure can suppress both the excess current of the MOSFET and SBD current leakage during short-circuit operation, but it also obstructs current flow from the SBD, raising concerns about decreased reliability in diode conduction. 

    This led Toshiba to consider a barrier structure divided into shallow and deep areas. The deep barrier area successfully suppresses excess current from the MOSFET part during short-circuit operation, and reduces SBD current leakage, while leaving a shallow area effectively spreads current from the SBD without any obstruction by the barrier.

    This improves ruggedness during short-circuit operation while maintaining excellent reliability in reverse conduction operation. Toshiba has provided some customers with test samples of SiC MOSFETs with embedded SBD that apply the new technology since December 2023 for evaluation, toward further enhancing performance.

    By making use of its new design technology and optimizing the device structure, Toshiba has developed a prototype 1.2 kV class SBD-integrated MOSFET. This achieves a low RonA of 2.0 mΩcm2, about a 26% improvement over the current structure. Toshiba will present the details of this technology at The 36th International Symposium on Power Semiconductor Devices and ICs (ISPSD) 2024, an international conference on power semiconductors, which is being held in Bremen, Germany from June 2 to 6.

    Original – Toshiba

    Comments Off on Toshiba Introduced a 1200V SBD Embedded SiC MOSFET
  • STMicroelectronics to Build Fully Integrated Silicon Carbide Facility in Italy

    STMicroelectronics to Build Fully Integrated Silicon Carbide Facility in Italy

    2 Min Read

    STMicroelectronics announced a new high-volume 200mm silicon carbide (“SiC”) manufacturing facility for power devices and modules, as well as test and packaging, to be built in Catania, Italy. Combined with the SiC substrate manufacturing facility being readied on the same site, these facilities will form ST’s Silicon Carbide Campus, realizing the Company’s vision of a fully vertically integrated manufacturing facility for the mass production of SiC on one site.

    The creation of the new Silicon Carbide Campus is a key milestone to support customers for SiC devices across automotive, industrial and cloud infrastructure applications, as they transition to electrification and seek higher efficiency.

    “The fully integrated capabilities unlocked by the Silicon Carbide Campus in Catania will contribute significantly to ST’s SiC technology leadership for automotive and industrial customers through the next decades,” said Jean-Marc Chery, President and Chief Executive Officer of STMicroelectronics. “The scale and synergies offered by this project will enable us to better innovate with high-volume manufacturing capacity, to the benefit of our European and global customers as they transition to electrification and seek more energy efficient solutions to meet their decarbonization goals.”

    The Silicon Carbide Campus will serve as the center of ST’s global SiC ecosystem, integrating all steps in the production flow, including SiC substrate development, epitaxial growth processes, 200mm front-end wafer fabrication and module back-end assembly, as well as process R&D, product design, advanced R&D labs for dies, power systems and modules, and full packaging capabilities. This will achieve a first of a kind in Europe for the mass production of 200mm SiC wafers with each step of the process – substrate, epitaxy & front-end, and back-end – using 200 mm technologies for enhanced yields and performances.

    The new facility is targeted to start production in 2026 and to ramp to full capacity by 2033, with up to 15,000 wafers per week at full build-out. The total investment is expected to be around five billion euros, with a support of around two billion euros provided by the State of Italy within the framework of the EU Chips Act. Sustainable practices are integral to the design, development, and operation of the Silicon Carbide Campus to ensure the responsible consumption of resources including water and power.

    Original – STMicroelectronics

    Comments Off on STMicroelectronics to Build Fully Integrated Silicon Carbide Facility in Italy