-
LATEST NEWS2 Min Read
Ideal Power Inc. announced the start of third-party automotive qualification and reliability testing of B-TRAN™ devices.
“This is a significant milestone in our commercialization roadmap as third-party automotive qualification and reliability testing of B-TRAN™ is now underway. Demonstration of compliance with automotive standards, the most stringent reliability standards for power semiconductor devices, is expected to accelerate the adoption of B-TRAN™ with large industrial customers as well as automotive OEMs and Tier 1 automotive suppliers,” said Dan Brdar, President and Chief Executive Officer of Ideal Power.
Ideal Power successfully performed a critical subset of reliability testing of packaged B-TRAN™ devices in its lab and at a third-party testing site to confirm readiness for third-party automotive qualification and reliability testing. This testing focused on the reliability of packaged B-TRAN™ devices in extreme environmental conditions and under high electrical and thermal stress as well as blocking voltage and shock testing.
All of the tested devices packaged by commercial packaging partner passed these tests indicating a robust B-TRAN™ packaging design. As a result, the Company engaged a third-party to commence full automotive qualification and reliability testing.
The automotive qualification and reliability testing includes a broader array of testing as required by automotive codes and standards utilizing specified parameters and a wide range of test conditions. The testing to achieve automotive qualification requires over a thousand packaged B-TRAN™ devices from multiple wafer runs.
The process includes tens of thousands of power cycles at various current levels, thermal cycling at extreme temperature and humidity levels, blocking voltage and shock and vibration testing, and visual inspection. These tests are designed to expose B-TRAN™ to conditions that are intended to accelerate failure mechanisms and demonstrate the long-term reliability of the devices. Successful completion of B-TRAN™ automotive qualification and reliability testing is expected in the first half of 2025.
Original – Ideal Power
-
Ideal Power Inc. announced an agreement with RYOSHO U.S.A, INC., a subsidiary of RYODEN CORPORATION, for the global distribution of Ideal Power’s products. RYOSHO has already placed orders with Ideal Power from a large global customer interested in the Company’s products for solid-state circuit protection applications.
“This is a significant development in the commercialization of our B-TRAN™ technology as we add a second distributor for our products. RYOSHO has a strong technical sales team with expertise in securing sales for new technologies and global reach, with particular strength in Asia. We look forward to collaborating with RYOSHO to secure additional orders that may potentially lead to design wins and/or custom development agreements,” said Dan Brdar, President and Chief Executive Officer of Ideal Power.
Ideal Power utilizes an asset-light business model leveraging the large investment already made in silicon processing, distribution, demand creation and support infrastructure. This business model allows the Company to continue focusing on disruptive B-TRAN™ technology improvements and commercialization while minimizing capital requirements.
Original – Ideal Power
-
LATEST NEWS2 Min Read
Ideal Power Inc. is collaborating with a third global automaker. This global automaker is working closely and meeting regularly with Ideal Power engineers on the use of B-TRAN™-enabled contactors to potentially replace electromechanical contactors in its electric vehicles (EVs).
“We are delighted to announce this collaboration with a third global automaker for the evaluation of B-TRAN™ in a new EV application for us. Their initial focus is on EV contactors. Solid-state contactors in EVs are an emerging market and our technology is potentially enabling for this application due to its very low conduction losses and inherent bidirectionality. This represents another engagement for us with the world’s leading automakers along with our previously announced engagements with Stellantis and a second Top 10 global automaker,” said Dan Brdar, President and Chief Executive Officer of Ideal Power.
Contactors serve as cutoff switches for high voltage applications in EVs. They play a critical role in isolating the battery, inverter, and onboard charger to ensure safety when the vehicle is off or being serviced. Contactors are bidirectional and there are typically 4 to 6 high-power contactors in every EV. The high-power EV contactor market is forecasted to grow to over $3.7 billion in 2025 and the Company believes that, over time, solid-state contactors will potentially displace electromechanical contactors in half or more of this market.
Solid-state contactors provide several benefits over electromechanical contactors. They are much faster acting, thereby eliminating arcing and improving safety, and are more reliable as they do not include physical contacts subject to wear. In addition, they provide programmable settings for trip and current limits as well as built-in safety diagnostics. Solid-state contactors are also expected to cost less than electromechanical contactors in EV applications.
Original – Ideal Power
-
LATEST NEWS3 Min Read
Ideal Power Inc. announced a global leader in circuit protection, industrial fuses and power conversion electronics with over a billion in annual sales entered into an agreement with Ideal Power to test and evaluate B-TRAN™ power semiconductors for circuit protection in industrial markets including industrial fuses, renewable energy and energy storage power conversion, rail/transportation, and electric vehicle (“EV”) power management.
“We are excited to collaborate with a global leader in circuit protection, industrial fuses and power conversion technology interested in B-TRAN™ as an enabling technology,” said Dan Brdar, President and Chief Executive Officer of Ideal Power. “This global supplier presents multiple opportunities for us as they address several of our target markets. We look forward to gathering their feedback on their application-specific requirements to drive our product roadmap and to potentially secure design wins and/or a customer development agreement with them.”
Circuit protection is required for renewable energy grid interfaces and EV power connections. B-TRAN™ technology has clear advantages in applications including EV power transfer, DC microgrids, energy storage systems and railway substations. These applications require fast-acting circuit protection to minimize electrical faults. In addition, B-TRAN™-based circuit protection also provides dramatically lower conduction losses and bidirectional capability thereby enabling greater efficiency while simultaneously lowering component count and system costs.
Ideal Power’s patented semiconductor power switch, B-TRAN™, can reduce power losses by 50% or more over conventional power switches, depending on the application. B-TRAN™’s higher efficiency results in less heat being generated and therefore significantly lower thermal management requirements, requiring significantly smaller surface area to dissipate heat and giving rise to potentially smaller original equipment manufacturer products. B-TRAN™ offers the industry’s only symmetric bidirectional operation, reducing the number of components required for an application by 75% compared to a conventional bidirectional switch utilizing IGBTs and diodes.
This highly efficient and unique symmetric operation provides a strong competitive advantage in bidirectional applications, which are growing rapidly as transportation electrifies and power generation shifts to renewable energy coupled with energy storage. For more information on B-TRAN™, visit here.
Ideal Power plans to continue adding potential customers to the test and evaluation program. The program is expected to remain an embedded process in the Company’s sales and marketing effort and a source of input for its next generation of products. The Company’s outreach continues to generate significant new interest resulting in inquiries from potential customers about B-TRAN™, the SymCool™ power module, the SymCool™ IQ intelligent power module and participation in the test and evaluation program.
Original – Ideal Power
-
LATEST NEWS
Ideal Power Receives Order from Global Leader in Power Semiconductor and Power Electronics Solutions
2 Min ReadIdeal Power Inc. received a purchase order from a global leader in power semiconductor and power electronics solutions. The customer purchased B-TRAN™ devices and a circuit breaker evaluation board and is collaborating with Ideal Power on a solid-state circuit breaker (SSCB) design in connection with its launch of a multi-year DC power distribution system program.
For SSCB applications, B-TRAN™ technology has clear advantages for SSCBs, providing dramatically lower conduction losses, lower costs, and bidirectionality compared to electromechanical breakers and IGBT and silicon carbide MOSFET-based SSCBs.
“We are excited to collaborate with global leaders interested in B-TRAN™ as an enabling technology for SSCBs,” said Dan Brdar, President and Chief Executive Officer of Ideal Power. “This specific customer presents multiple opportunities for us as they address several of our target markets including SSCBs, industrial and grid infrastructure and renewable energy.”
Ideal Power’s patented semiconductor power switch, B-TRAN™, can reduce power losses by 50% or more over conventional power switches, depending on the application. B-TRAN™’s higher efficiency results in less heat being generated and therefore significantly lower thermal management requirements, requiring significantly smaller surface area to dissipate heat and giving rise to potentially smaller original equipment manufacturer products.
B-TRAN™ offers the industry’s only symmetric bidirectional operation, reducing the number of components required for an application by 75% compared to a conventional bidirectional switch utilizing IGBTs and diodes. This highly efficient and unique symmetric operation provides a strong competitive advantage in bidirectional applications, which are growing rapidly as transportation electrifies and power generation shifts to renewable energy coupled with energy storage.
Original – Ideal Power
-
LATEST NEWS3 Min Read
Ideal Power Inc. announced that the Company commenced commercial shipment of its SymCool™ Power Module to a large, global customer.
“The commencement of SymCool™ shipments to fulfill customer orders is an exciting time for Ideal Power and a pivotal step in the commercialization of our B-TRAN™ technology. We could not be more excited,” stated Dan Brdar, President and Chief Executive Officer of Ideal Power. “We expect to convert large OEMs into design wins and/or additional custom development agreements this year. We’re thrilled we are successfully executing against our commercialization roadmap, remain on track to achieve our 2024 milestones, and look forward to several commercial announcements in the coming months.”
The SymCool™ Power Module targets several applications including solid-state switchgear, renewable energy inverters for solar and wind, industrial inverters, electric vehicles (EVs) and EV charging. Customer evaluations confirmed the B-TRAN™ technology packaged into the multi-die SymCool™ Power Module has lower conduction losses and significant efficiency benefits over existing IGBT-based designs.
SymCool™ Power Module is a Groundbreaking Innovation
The SymCool™ Power Module delivers clear advantages for several markets including the large, growing solid-state switchgear market where there is a need for low conduction losses in a wide range of applications such as solid-state circuit breakers (SSCBs), protective relays and contactors.
The SymCool™ Power Module utilizes Ideal Power’s B-TRAN™ technology, a dual-sided semiconductor with inherent bidirectional capability. Existing power semiconductors, such as IGBTs, are single-sided and operate as unidirectional switches.
The inherent bidirectional capability of the SymCool™ Power Module means that half as many switches are needed compared to implementation with IGBTs, as IGBT-based modules need a dedicated switch for each direction of energy flow. Fewer components translate to smaller, more cost-efficient OEM designs. In addition, SymCool™ Power Modules can be configured in parallel to achieve the required current for a wide range of applications and OEM products.
The Company looks forward to the SymCool™ sales ramp beginning in the second half of 2024 as expected.
SymCool™ Energy Savings
Circuit breakers continuously conduct current, so it is critical to keep conduction losses to a minimum. The SymCool™ Power Module exhibits dramatically lower conduction losses compared to IGBTs, thereby allowing for energy savings that are necessary as power grids are modernized. In particular, the integration of renewable energy sources and energy storage systems into the grid will require circuit breakers that do not waste the precious energy generated by solar or wind. The low conduction losses of the SymCool™ Power Module meet this requirement.
Circuit Breakers are Everywhere
Circuit breakers perform critical functions in controlling the flow of electricity and containing high currents created by faults in that flow in a wide variety of applications. In addition to the high demand for circuit breakers from renewable energy, microgrids, energy storage, and EV applications, there is a tremendous need to upgrade aging infrastructure, including utility transmission and distribution networks and railway systems.
Two critical circuit breaker operating requirements are fast switching and low conduction losses. Traditional mechanical circuit breakers are slow acting and prone to wear and arcing; IGBT and MOSFET-based SSCBs suffer from high conduction losses. The fast-switching speed of B-TRAN™ solves the slow operating time and electrical arcing of electromechanical circuit breakers while also providing more than 50% lower conduction losses compared to SSCBs utilizing conventional semiconductor power switches.
In addition to energy savings, the improved efficiency also results in lower cost and less complex cooling systems, benefits that significantly impact the economics of SSCBs and applications incorporating the SSCBs such as transmission and distribution systems. This is why B-TRAN™ is an enabling technology for SSCBs.
Original – Ideal Power