IGBT Tag Archive

  • Mitsubishi Electric Announced Release of Six New J3-Series Power Semiconductor Modules

    Mitsubishi Electric Announced Release of Six New J3-Series Power Semiconductor Modules

    2 Min Read

    Mitsubishi Electric Corporation announced the coming release of six new J3-Series power semiconductor modules for various electric vehicles (xEVs), featuring either a silicon carbide metal-oxide semiconductor field-effect transistor (SiC-MOSFET) or a RC-IGBT (Si), with compact designs and scalability for use in the inverters of electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs). All six J3-Series products will be available for sample shipments from March 25.

    The new power modules will be exhibited at the 38th Electronics R&D, Manufacturing and Packaging Technology Expo (NEPCON JAPAN 2024) from January 24 to 26 at Tokyo Big Sight, Japan, as well as other exhibitions in North America, Europe, China and additional locations.

    As power semiconductors capable of efficiently converting electricity expand and diversify in response to decarbonization initiatives, the demand is increasing for SiC power semiconductors offering significantly reduced power loss. In the xEV sector, power semiconductor modules are used widely in power conversion devices such as inverters for xEV drive motors.

    In addition to extending the cruising range of xEVs, compact, high-power, high-efficiency modules are needed to further downsize batteries and inverters. But due to the high safety standards set for xEVs, power semiconductors used in drive motors must be more reliable than those used in general industrial applications.

    Development of these SiC products was partially supported by Japan’s New Energy and Industrial Technology Development Organization (NEDO).

    Original – Mitsubishi Electric

    Comments Off on Mitsubishi Electric Announced Release of Six New J3-Series Power Semiconductor Modules
  • BYD Honors United Nova Technology with Special Contribution Award

    BYD Honors United Nova Technology with Special Contribution Award

    1 Min Read

    BYD honored United Nova Technology (formerly known as Semiconductor Manufacturing Electronics (ShaoXing) Corporation) with “Special Contribution Award” on BYD NEV (New Energy Vehicle) Core Supplier Convention 2023 for being a highly reliable partner in terms of quality and delivery capability.

    Since 2021, UNT has engaged in broad cooperation with BYD in multi domains, including power devices such as SiC MOSFET, IGBT, and silicon-based MOSFET, as well as power modules and analog IC for automotive industry.

    With the deepening of cooperation, UNT’s products have entered BYD’s ocean series and dynasty series on a large scale. In 2023, the SiC MOSFET manufactured by UNT have been widely installed in BYD’s electric vehicles. Being awarded the “Special Contribution Award” is a full recognition of the continuous contribution and outstanding performance of UNT.

    In the future, UNT will continue to deepen its close cooperation with global customers such as BYD, promote technology innovations, and provide customers with more efficient and low-energy consumption solutions to support the vigorous development of the green energy.

    Original – United Nova Technology

    Comments Off on BYD Honors United Nova Technology with Special Contribution Award
  • Infineon Introduced 4.5 kV XHP™ 3 IGBT Modules to Fundamentally Change the Landscape for Medium Voltage Drives

    Infineon Introduced 4.5 kV XHP™ 3 IGBT Modules to Fundamentally Change the Landscape for Medium Voltage Drives

    2 Min Read

    The paradigm shift towards offloading complexity to suppliers and adopting smaller IGBT modules is evident in various applications. In response to the global push for downsizing and integration, Infineon Technologies AG introduced the 4.5 kV XHP™ 3 IGBT modules that will fundamentally change the landscape for medium voltage drives (MVD) and transportation applications operating at 2000 to 3300 V AC in 2- and 3-level topologies.

    Applications benefiting from the new devices include large conveyor belts, pumps, high-speed trains, locomotives, as well as commercial, construction and agricultural vehicles (CAV).

    The XHP family comprises a 450 A dual IGBT module with TRENCHSTOP™ IGBT4 and an emitter-controlled diode, and a 450 A double diode module with emitter-controlled E4 Diode. Both modules feature improved isolation of 10.4 kV. Together, they help to simplify paralleling and downsizing without sacrificing efficiency.

    Previously, complex busbars were required to parallelize switching modules, resulting in complicated design efforts and leakage inductance. The innovative design of the XHP family simplifies paralleling by conveniently placing the connections side by side. As a result, only a single straight busbar is required for paralleling. 

    The 4.5 kV XHP family also allows developers to reduce the number of units. Conventional IGBT solutions use multiple single switches and a double diode. With the new devices, however, designs can be reduced to two dual switches and a smaller double diode – a significant step forward in integrated drives.

    The combination of the XHP 3 FF450R45T3E4_B5 dual switch and the DD450S45T3E4_B5 double diode enables significant cost savings and a smaller footprint. For example, Infineon’s previous IGBT solutions required four 140 x 190 mm² or 140 x 130 mm² switches and one 140 x 130 mm² double diode. With the new XHP family, the components can be reduced to two 140 x 100 mm² dual switches and a smaller 140 x 100 mm² double diode.

    The IGBT modules FF450R45T3E4_B5 and DD450S45T3E4_B5 are available now. More information is available at www.infineon.com/XHP.

    Original – Infineon Technologies

    Comments Off on Infineon Introduced 4.5 kV XHP™ 3 IGBT Modules to Fundamentally Change the Landscape for Medium Voltage Drives
  • Power Integrations Released a New Family of Plug-and-Play Gate Drivers for 62 mm SiC MOSFET and IGBT Modules

    Power Integrations Released a New Family of Plug-and-Play Gate Drivers for 62 mm SiC MOSFET and IGBT Modules

    2 Min Read

    Power Integrations announced a new family of plug-and-play gate drivers for 62 mm silicon-carbide (SiC) MOSFET and silicon IGBT modules rated up to 1700 V, with enhanced protection features to ensure safe, reliable operation.

    SCALE™-2 2SP0230T2x0 dual-channel gate drivers deploy short-circuit protection in less than two microseconds, protecting the compact SiC MOSFETs against damaging over-currents. The new drivers also include advanced active clamping (AAC) to protect the switches against over-voltage during turn-off, enabling higher DC link operating voltages.

    Thorsten Schmidt, product marketing manager at Power Integrations, commented: “The 2SP0230T2x0 gate drivers are flexible; the same hardware can be used to drive either SiC MOSFET or IGBT modules. This reduces both system design and sourcing challenges, and the plug-and-play approach speeds development.”

    Ideal for applications such as railway auxiliary converters, offboard EV chargers and STATic synchronous COMpensator (STATCOM) voltage regulators for the power grid, 2SP0230T2x0 gate drivers are based on Power Integrations’ proven SCALE-2 technology, resulting in higher levels of integration, smaller size, more functionality and enhanced system reliability.

    Power Integrations’ compact 134 x 62 mm 2SP0230T2x0 provides reinforced isolation at 1700 V, enabling use for up to 1700 V operation; this is 500 V higher than conventional drivers, which are typically limited to 1200 V.

    Original – Power Integrations

    Comments Off on Power Integrations Released a New Family of Plug-and-Play Gate Drivers for 62 mm SiC MOSFET and IGBT Modules
  • JCET Pioneering Automotive HiRel SiC Device Packaging

    JCET Pioneering Automotive HiRel SiC Device Packaging

    3 Min Read

    With decades of expertise in power device packaging and testing, JCET Group offers a comprehensive power product portfolio encompassing IGBT, SiC, GaN, and more. In the field of high-density power solutions for automotive applications, JCET’s unique power module technology positions us at the forefront of power main drive solutions.

    JCET’s innovative packaging technology for high power density Silicon Carbide (SiC) power modules minimizes parasitic effects and thermal resistance, while our groundbreaking interconnect technology ensures high reliability. Reduced power loss and improved performance, making JCET the preferred choice for high-reliability SiC device packaging for the automotive industry.

    The rapid growth of the power semiconductor market in automotive applications is being driven by the acceleration of vehicle electrification. In this evolving landscape, a multitude of power devices find applications in crucial automotive systems such as motor control, DC-DC conversion, air conditioning drives, on-board chargers (OBC), and battery management for electrical vehicles.

    According to research by Strategy Analytics, the value of power devices in battery electric vehicles (BEVs) is nearly five times that in traditional fuel vehicles. This is where SiC devices come into play, offering several advantages. SiC devices feature smaller conductor resistors per unit area, higher voltage capabilities, faster switching speeds, and the ability to operate at high temperatures. These characteristics are instrumental in enhancing the power density of the inverter, ultimately leading to improved operational efficiency and extended mileage for electric vehicles under real-world conditions.

    JCET combines low stray inductance package technology, advanced interconnect packaging technology, and cutting-edge thermal management solutions, tailoring our packaging processes to meet individual customer requirements. Within this package, a suite of integrated solutions, including the whole-silver sintering process, copper wire bonding, and single-side direct water cooling, is employed.

    Furthermore, SiC devices, with their smaller footprint, increased power density, and higher breakdown voltage compared to conventional silicon-based power devices, are at the core of our packaging. When integrated into an 800V platform, SiC devices deliver substantial system advantages, enabling rapid charging and extended mileage. JCET’s unwavering commitment to optimizing packaging technology is evident in our High-Performance Device (HPD) package, which is continuously fine-tuned to excel in SiC high-frequency switching applications.

    With the growing adoption of SiC devices across diverse sectors like automotive controllers, charging stations, and photovoltaic energy storage, JCET has pioneered innovative designs encompassing packaging materials, internal connections, and packaging structures. JCET has introduced a range of packaging solutions tailored to meet various user requirements, including:

    • 400V platform, A0/A00 vehicles within 70KW: Si Hybrid Package1 solution;
    • 400V platform, Class A vehicles between 100-200KW: Si/SiC Hybrid Package Driver solution;
    • 800V platform, Class B and luxury cars with 200KW and above: SiC single/double sided heat dissipation solution.

    Automotive power devices, including SiC, hold vast market potential and exhibit a high level of technical innovation certainty. This presents a compelling opportunity for device designers and manufacturers. Looking ahead, JCET remains committed to its core mission of advancing power device packaging solutions, We are dedicated to expanding our technology offerings, ensuring our customers have a diverse array of options, helping them integrate more efficient and reliable technologies into the new energy vehicle systems.

    Original – JCET

    Comments Off on JCET Pioneering Automotive HiRel SiC Device Packaging
  • Magnachip Introduced New 1200V and 650V IGBTs

    Magnachip Introduced New 1200V and 650V IGBTs

    1 Min Read

    Magnachip Semiconductor Corporation announced the launch of its 1200V and 650V Insulated Gate Bipolar Transistors (IGBTs), designed for the positive temperature coefficient (PTC) heaters of electric vehicles (EVs).

    Built upon Magnachip’s cutting-edge Field Stop Trench technology, the newly introduced AMBQ40T120RFRTH (1200V) and AMBQ40T65PHRTH (650V) offer a minimum short-circuit withstand time of 10µs. This remarkable level of ruggedness enables PTC heaters to be protected from a permanent failure in the event of overcurrent conditions.

    Furthermore, the thick and large heat sink of the TO-247 package allows these new IGBTs to excel in heat dissipation. Therefore, these IGBTs are well-suited for applications requiring high power and efficiency, such as both the upper and lower sides of power management integrated circuits of PTC heaters.

    “Since early last year, Magnachip has released high-performance automotive power solutions that adhere to the stringent AEC-Q101 standards,” said YJ Kim, CEO of Magnachip. “Now that we have successfully released our first IGBT products for EVs, we will continue to expand our product lineup to meet the diverse needs of the EV market and cater to the demands of our valued customers.”

    New IGBTs for EV PTC heaters

    Original – Magnachip Semiconductor

    Comments Off on Magnachip Introduced New 1200V and 650V IGBTs
  • Toshiba Introduces 600V IP Devices

    Toshiba Introduces 600V IP Devices

    2 Min Read

    Toshiba Electronics Europe GmbH launched two products for brushless DC (BLDC) motor drive applications including fan motors, ventilation fan, air conditioners, air cleaners, and pumps.

    Each of the intelligent power devices (IPD) incorporate  600V-rated IGBTs and a matched gate driver as a one-chip solution in a single compact package. The output DC current (IOUT) rating of the TPD4163F is 1A while the TPD4164F is rated at 2A.

    The two devices (TPD4163F and TPD4164F) have an IGBT  saturation voltage (VCEsat) of 2.6V and 3.0V respectively, while the Diode forward voltage (VF) is 2.0V and 2.5V.

    Both devices are housed in a miniature surface mount HSSOP31 package. With dimensions of just 17.5mm x 11.93mm x 2.2mm, the PCB footprint is reduced by around 63% when compared with Toshiba’s existing DIP26 package products. This makes a significant contribution to reducing the space required for motor drive circuit boards.

    In addition, in geographic regions where the power supply is unstable, the supply voltage may fluctuate significantly. Therefore, to improve reliability, the supply voltage rating (VBB)has been increased from 500V to 600V to introduce more design margin.

    To support the new devices, Toshiba has developed a reference design for BLDC sensorless brushless DC motor drive utilizing the new TPD4164F and a microcontroller TMPM374FWUG.

    Toshiba will continue to expand their product lineup with various packages and improved characteristics, contributing to customers’ design flexibility and carbon neutrality through energy-saving motor control.

    Volume production shipments of both new devices (and the reference design board) start today.

    Original – Toshiba

    Comments Off on Toshiba Introduces 600V IP Devices
  • STMicroelectronics Expands IGBT Portfolio with New 1350V Series

    STMicroelectronics Expands IGBT Portfolio with New 1350V STPOWER IH2 Series

    1 Min Read

    STMicroelectronics has released a new class of IGBTs with an increased breakdown-voltage capability of 1350V and maximum operating temperature of 175°C. The higher ratings ensure greater design margin, robust performance, and extended reliability under all operating conditions.

    The new STPOWER IH2 series IGBTs also permit increased power-conversion efficiency. Favorable parameters include low saturation voltage, Vce(sat), which ensures low dissipation when the device is turned on. The freewheeling diode has low voltage drop and optimized turn-off energy that increases the efficiency of single-switch quasi-resonant converters operating at frequencies from 16kHz to 60kHz.

    With their ruggedness and high efficiency, these IGBTs are ideal for induction-heating applications including domestic appliances such as kitchen hobs, inverter microwave ovens, and rice cookers. In a 2kW application, ST’s new IGBT devices can reduce power dissipation by up to 11%.

    In addition, the Vce(sat) has a positive temperature coefficient and tight parameter distribution between devices helps simplify design and ease connecting multiple IGBTs in parallel to address high-power applications.

    The first two devices in the series, the 25A STGWA25IH135DF2 and 35A STGWA35IH135DF2, are in production now and available in a standard TO-247 long-lead power package.

    Original – STMicroelectronics

    Comments Off on STMicroelectronics Expands IGBT Portfolio with New 1350V STPOWER IH2 Series
  • Infineon Presents H7 Variant of Gen7 Discrete 650 V TRENCHSTOP™ IGBTs

    Infineon Presents H7 Variant of Gen7 Discrete 650 V TRENCHSTOP™ IGBTs

    2 Min Read

    Infineon Technologies AG expands its 7th generation TRENCHSTOP™ IGBT family with the discrete 650 V IGBT7 H7 variant. The devices feature a cutting-edge EC7 co-packed diode with an advanced emitter-controlled design, coupled with high-speed technology to address the escalating need for environmentally conscious and highly efficient power solutions.

    Using the latest micro-pattern trench technology, the TRENCHSTOP IGBT7 H7 offers excellent control and performance, resulting in significant loss reduction, improved efficiency and higher power density. As a result, the device is ideal for various applications such as string inverters, energy storage systems (ESS), electric vehicle charging applications, and traditional applications such as industrial UPS and welding.

    In a discrete package, the 650 V TRENCHSTOP IGBT7 H7 can deliver up to 150 A. The portfolio includes variants from 40 A to 150 A, offered in four different package types: TO-247-3 HCC, TO-247-4, TO-247-3 Plus and TO-247-4 Plus. The TO-247-3 HCC variant of the TRENCHSTOP IGBT 7 H7 features a high creepage distance.

    For improved performance, the TO-247 4-pin packages (standard: IKZA, Plus: IKY) are particularly well suited, as they not only reduce switching losses, but also offer additional benefits such as lower voltage overshoot, minimized conduction losses and the lowest reverse current loss. With these features, the TRENCHSTOP IGBT 7 H7 simplifies the design and minimizes the need to connect devices in parallel.

    In addition, the 650 V TRENCHSTOP IGBT 7 H7 features robust moisture resistance for reliable operation in harsh environments. The device is qualified for industrial use according to the relevant tests of JEDEC47/20/22, especially HV-H3TRB, making it well suited for outdoor applications.

    Designed to meet the demand for green and efficient power applications, the IGBT offers significant improvements over the previous generations. As a result, the TRENCHSTOP IGBT 7 H7 is the ideal complement for the NPC1 topology often used in applications such as solar and ESS.

    Original – Infineon Technologies

    Comments Off on Infineon Presents H7 Variant of Gen7 Discrete 650 V TRENCHSTOP™ IGBTs
  • Fuji Electric Releases the 3rd-Generation IPMs

    Fuji Electric Releases 3rd-Generation IPMs

    2 Min Read

    Fuji Electric Co., Ltd. announced the launch of the P633C Series 3rd-generation small IPMs, which help reduce the power consumption of the equipment on which it is mounted, such as home appliances and machine tools.

    IPMs (intelligent power modules) are power semiconductors equipped with a built-in IGBT drive circuit and protection function. They are used for applications including inverters and servo systems. Inverters and servo systems control machine operation by controlling voltage and frequency through power semiconductor switching (turning electricity on and off), but power semiconductors generate power loss and electromagnetic noise during switching.

    This product can reduce both the power loss and the electromagnetic noise generated during switching. Using this product in inverters for home appliances or servo systems for machine tools can reduce the power consumption of the equipment on which it is mounted, thereby contributing to the achievement of a decarbonized society.

    One way to reduce the power loss that occurs during switching is to speed up the switching operation. Faster switching increases electromagnetic noise, which can cause peripheral devices to malfunction. This product uses the latest 7th-generation IGBT/FWD chips, achieving a 10% reduction of power loss and a reduction of electromagnetic noise to approximately 1/3 compared with conventional products. The trade-off characteristics between power loss and noise are among the best in the industry.

    Original – Fuji Electric

    Comments Off on Fuji Electric Releases 3rd-Generation IPMs