Infineon Technologies Tag Archive

  • Innoscience responds to Infineon's Lawsuit

    Innoscience Responds to Infineon’s Lawsuit

    2 Min Read

    Innoscience Technology firmly denounces the accusations made by Infineon Technologies Austria AG in a recent patent infringement lawsuit against three Innoscience entities. Infineon filed this lawsuit in a U.S. district court in California on March 13, 2024, and asserted a single U.S. patent.

    Innoscience denies Infineon’s allegations of patent infringement as well as the validity of the Infineon patent. Innoscience will vigorously defend itself and is confident that it will prevail. Infineon’s intention with this litigation is also in question, as it has asserted a patent that has significant defects. Particularly, even a cursory review of Infineon’s patent portfolio reveals that the alleged “invention” of the asserted patent was already disclosed in Infineon’s own earlier prior art patents, raising concerns that it may have committed fraud on the United States Patent and Trademark Office, for not making proper disclosures during the prosecution of the asserted defective patent.

    In addition, contrary to Infineon’s wrong characterization that the claims of the asserted defective patent “cover core aspects of GaN power semiconductors,” the lawsuit only concerns a small fraction of Innoscience’s packaged high-voltage (650V-700V) GaN transistors and does not affect the vast majority of its other products (including unpackaged transistors and wafers, low-voltage transistors, and certain packaged transistors).

    Therefore, the lawsuit should have little to no effect on Innoscience’s current ability to make, use, sell, offer to sell, or import into the United States its products for customers. Innoscience respects others’ valid IP rights and is also dedicated to developing its own IP portfolio. Despite being an eight-year old company, Innoscience has filed more than 800 patent applications globally. Innoscience’s R&D team boasts 500+ technical experts across the world.

    Through continuing innovation, Innoscience has produced GaN devices to power a diverse range of products, from power delivery chargers to data centers and smartphones, showcasing its ability to align with evolving application demands and adapt to diverse customer specifications.

    Moreover, Innoscience has always sought a cooperative and mutually beneficial approach to develop the global GaN industry, even among others in the same industry. Innoscience intends to prevail in this pending lawsuit and is determined to remain a trusted and reliable partner for its customers and contribute to their success by offering top-notch and versatile products and solutions based on Innoscience’s home-grown, superior technologies.

    Original – Innoscience Technology

    Comments Off on Innoscience Responds to Infineon’s Lawsuit
  • Infineon Successfully Completed its Share Buyback Program 2024

    Infineon Successfully Completed its Share Buyback Program 2024

    1 Min Read

    On 18 March 2024, Infineon Technologies AG successfully completed its Share Buyback Program 2024, announced on 26 February 2024 in accordance with Article 5(1)(a) of Regulation (EU) No 596/2014 and Article 2(1) of Delegated Regulation (EU) No 2016/1052.

    As part of the Share Buyback Program 2024, a total of 7,000,000 shares (ISIN DE0006231004) were acquired. The total purchase price of the repurchased shares was € 232,872,668. The average purchase price paid per share was € 33.27.

    The buyback was carried out on behalf of Infineon by an independent credit institution via Xetra trading on the Frankfurt Stock Exchange, serving the sole purpose of allocating shares to employees of the company or affiliated companies, members of the Management Board of the company as well as members of the management board and the board of directors of affiliated companies as part of the existing employee participation programs.

    Original – Infineon Technologies

    Comments Off on Infineon Successfully Completed its Share Buyback Program 2024
  • Infineon Technologies Filed a Lawsuit against Innoscience Technology

    Infineon Technologies Filed a Lawsuit against Innoscience Technology

    2 Min Read

    Infineon Technologies AG filed a lawsuit, through its subsidiary Infineon Technologies Austria AG, against Innoscience (Zhuhai) Technology Company, Ltd., and Innoscience America, Inc. and affiliates. Infineon is seeking permanent injunction for infringement of a United States patent relating to gallium nitride (GaN) technology owned by Infineon.

    The patent claims cover core aspects of GaN power semiconductors encompassing innovations that enable the reliability and performance of Infineon’s proprietary GaN devices. The lawsuit was filed in the district court of the Northern District of California.

    Infineon alleges that Innoscience infringes the Infineon patent mentioned above by making, using, selling, offering to sell and/or importing into the United States various products, including GaN transistors for numerous applications, within automotive, data centers, solar, motor drives, consumer electronics, and related products used in automotive, industrial, and commercial applications.

    “The production of gallium nitride power transistors requires completely new semiconductor designs and processes”, said Adam White, President of Infineon’s Power & Sensor Systems Division. “With nearly two decades of GaN experience, Infineon can guarantee the outstanding quality required for the highest performance in the respective end products. We vigorously protect our intellectual property and thus act in the interest of all customers and end users.”

    Infineon has been investing in R&D, product development and the manufacturing expertise related to GaN technology for decades. Infineon continues to defend its intellectual property and protect its investments.

    On 24 October 2023, Infineon announced the closing of the acquisition of GaN Systems Inc., becoming a leading GaN power house and further expanding its leading position in power semiconductors.

    Infineon leads the industry with its GaN patent portfolio, comprising around 350 patent families. Market analysts expect the GaN revenue for power applications to grow by 49% CAGR to approx. US$2 billion by 2028 (source: Yole, Power SiC and GaN Compound Semiconductor Market Monitor Q4 2023). Gallium nitride is a wide bandgap semiconductor with superior switching performance that allows smaller size, higher efficiency and lower-cost power systems.

    Original – Infineon Technologies

    Comments Off on Infineon Technologies Filed a Lawsuit against Innoscience Technology
  • Infineon Technologies Unveiled 200 V OptiMOS™ 6 MOSFET Family

    Infineon Technologies Unveiled 200 V OptiMOS™ 6 MOSFET Family

    2 Min Read

    Motor drive applications are taking a leap forward with the launch of the Infineon Technologies AG OptiMOS™ 6 200 V MOSFET product family. The new portfolio is designed to deliver optimal performance in applications such as e-scooters, micro-EVs, and E-forklifts.

    The improved conduction losses and switching behavior for these new MOSFETs reduce the electromagnetic interference (EMI) and switching losses. This benefits various switching applications, including servers, telecom, energy storage systems (ESS), audio, solar and others.

    Additionally, the combination of a wide safe operating area (SOA) and industry-leading R DS(on) results in a perfect fit for static switching applications such as  battery management systems. With the introduction of the new OptiMOS 6 200 V product family, Infineon sets a new industry benchmark with increased power density, efficiency, and system reliability for its customers’ benefit.

    The OptiMOS 6 200 V portfolio delivers enhanced technical features compared to its predecessor, the OptiMOS 3. It features a 42 percent lower R DS(on) that contributes to reduced conduction losses and increased output power. Regarding diode behavior, the OptiMOS 6 200 V provides a significant increase in softness, more than three times that of the OptiMOS 3.

    Combined with up to 89 percent reduction in Q rr(typ), the switching and EMI behaviors are significantly improved. The technology also features improvements in parasitic capacitance linearity (C oss and C rss), which reduces oscillation during switching and lowers voltage overshoot. A tighter V GS(th) spread and lower transconductance aid in MOSFET paralleling and current sharing, leading to more uniform temperatures and reducing the number of paralleled MOSFETs.

    The OptiMOS 6 200 V products feature an improved SOA and are classified as MSL 1 according to J-STD-020. These RoHS-compliant, lead-free products align with current industry standards.

    Original – Infineon Technologies

    Comments Off on Infineon Technologies Unveiled 200 V OptiMOS™ 6 MOSFET Family
  • Infineon Technologies Delivers New 2kV CoolSiC™ MOSFETs

    Infineon Technologies Delivers New 2kV CoolSiC™ MOSFETs

    2 Min Read

    Infineon Technologies AG introduced the new CoolSiC™ MOSFETs 2000 V in the TO-247PLUS-4-HCC package to meet designers’ demand for increased power density without compromising the system’s reliability even under demanding high voltage and switching frequency conditions.

    The CoolSiC MOSFETs offer a higher DC link voltage so that the power can be increased without increasing the current. It is the first discrete silicon carbide device with a breakdown voltage of 2000 V on the market and comes in a TO-247PLUS-4-HCC package with a creepage distance of 14 mm and clearance distance of 5.4 mm. With low switching losses, the devices are ideal for solar (e.g. string inverters) as well as energy storage systems and electric vehicle charging applications.

    The CoolSiC MOSFET 2000 V product family is ideally suited for high DC link systems with up to 1500 V DC. Compared to 1700 V SiC MOSFETs, the devices also provide a sufficiently high overvoltage margin for 1500 V DC systems. The CoolSiC MOSFETs deliver a benchmark gate threshold voltage of 4.5 V and are equipped with a robust body diode for hard commutation. Due to the .XT connection technology, the components offer first-class thermal performance. They are also highly resistant to humidity.

    In addition to the CoolSiC MOSFETs 2000 V, Infineon will soon be launching the matching CoolSiC diodes: The first launch will be the 2000 V diode portfolio in the TO-247PLUS 4-pin package in the third quarter of 2024, followed by the 2000 V CoolSiC diode portfolio in the TO-247-2 package in the final quarter of 2024. These diodes are particularly suitable for solar applications. A matching gate driver portfolio is also available.

    The CoolSiC MOSFET 2000 V product family is available now. In addition, Infineon also offers a suitable evaluation board: the EVAL-COOLSIC-2KVHCC. Developers can use the board as a precise universal test platform to evaluate all CoolSiC MOSFETs and diodes 2000 V and the EiceDRIVER™ Compact Single Channel Isolated Gate Driver 1ED31xx product family through double pulse or continuous PWM operation.

    Original – Infineon Technologies

    Comments Off on Infineon Technologies Delivers New 2kV CoolSiC™ MOSFETs
  • Infineon Technologies Introduced the Second Generation of SiC MOSFET Trench Technology

    Infineon Technologies Introduced the Second Generation of SiC MOSFET Trench Technology

    3 Min Read

    Infineon Technologies AG opens a new chapter in power systems and energy conversion and introduces the next generation of silicon carbide (SiC) MOSFET trench technology. The new Infineon CoolSiC™ MOSFET 650 V and 1200 V Generation 2 improve MOSFET key performance figures such as stored energies and charges by up to 20 percent compared to the previous generation without compromising quality and reliability levels leading to higher overall energy efficiency and further contributing to decarbonization.

    CoolSiC MOSFET Generation 2 (G2) technology continues to leverage performance capabilities of silicon carbide by enabling lower energy loss that turns into higher efficiency during power conversion. This provides strong benefits to customers for various power semiconductor applications such as photovoltaics, energy storage, DC EV charging, motor drives and industrial power supplies.

    A DC fast charging station for electric vehicles which is equipped with CoolSiC G2 allows for up to 10 percent less power loss compared to previous generations, while enabling higher charging capacity without compromising form factors. Traction inverters based on CoolSiC G2 devices can further increase electric vehicle ranges. In the area of renewable energies, solar inverters designed with CoolSiC G2 make smaller sizes possible while maintaining a high power output, resulting in a lower cost per watt.

    “Megatrends call for new and efficient ways to generate, transmit and consume energy. With the CoolSiC MOSFET G2, Infineon brings silicon carbide performance to a new level,” said Dr. Peter Wawer, Division President Green Industrial Power at Infineon.

    “This new generation of SiC technology enables the accelerated design of more cost-optimized, compact, reliable, and highly efficient systems harvesting energy-savings and reducing CO 2 for every watt installed in the field. It’s a great example of Infineon’s relentless spirit, constantly pushing for innovation to drive decarbonization and digitalization in the industrial, consumer and automotive sectors.”

    Contributing to high-performance CoolSiC G2 solutions, Infineon’s pioneer CoolSiC MOSFET trench technology provides an optimized design trade-off, allowing higher efficiency and reliability compared to SiC MOSFET technology available so far. Combined with the award-winning .XT packaging technology, Infineon is further increasing the potential of designs based on CoolSiC G2 with higher thermal conductivity, better assembly control and improved performance.

    Mastering all relevant power technologies in silicon, silicon carbide and gallium nitride (GaN), Infineon offers design flexibility and leading-edge application know-how that meet the expectations and demands of modern designers. Innovative semiconductors based on wide-bandgap (WBG) materials like SiC and GaN are the key to conscious and efficient use of energy in fostering decarbonization.

    Original – Infineon Technologies

    Comments Off on Infineon Technologies Introduced the Second Generation of SiC MOSFET Trench Technology
  • Infineon Technologies to Reorganize Marketing and Sales

    Infineon Technologies to Reorganize Marketing and Sales

    2 Min Read

    Infineon Technologies AG is setting the course for ambitious growth by further strengthening and streamlining its sales organization. Starting 1 March, Infineon’s sales team will be structured around three customer-centric Sales Segments: “Automotive”, “Industrial & Infrastructure” and “Consumer, Computing & Communication”.

    The DEM sales organization will retain responsibility for distributors and Electronics Manufacturing Services (EMS). This new structure will further leverage the potential of Infineon’s comprehensive and diverse product portfolio by putting customers’ application needs at the center of the new organizational model. All of these organizations will be deployed globally with an optimized regional footprint.

    “Customers’ expectations are quickly evolving and are driven by speed of innovation and faster time-to-market,” says Andreas Urschitz, Chief Marketing Officer of Infineon. “With a streamlined customer interface which brings the relevant products and application expertise to the customers’ doorstep, Infineon is ideally positioned to enable customers’ success.”

    This simpler approach will give customers easier access to Infineon’s full portfolio and match their specific needs by offering complementary products from different divisions. In addition, this reorganization will reduce the number of interfaces for Infineon’s customers and help drive down time-to-market for their R&D projects enabled by Infineon semiconductors and solutions.

    Original – Infineon Technologies

    Comments Off on Infineon Technologies to Reorganize Marketing and Sales
  • Infineon Technologies Introduced a New Product Family of Solid-State Isolators

    Infineon Technologies Introduced a New Product Family of Solid-State Isolators

    2 Min Read

    Infineon Technologies AG introduced a new product family of Solid-State Isolators to achieve faster and more reliable circuit switching with protection features not available in optical-based solid state relays (SSR). The isolators use coreless transformer technology and support 20 times greater energy transfer with both current and temperature protection contributing to a higher reliability and lower cost of ownership.

    The new solid-state isolators allow driving the gates of Infineon’s MOS-controlled power transistors OptiMOS  and CoolMOS™ to reduce power dissipation of up to 70 percent of todays’ solid-state relays using SCR (silicon-controlled rectifier) and Triac switches.

    Infineon’s solid-state isolators enable custom solid-state relays capable of controlling loads more than 1000 V and 100 A. Improved performance and reliability make coreless transformer technology ideal for applications in advanced battery management, energy storage, renewable energy systems, as well as industrial and building automation system applications. With Infineon’s solid-state isolator drivers, engineers can further improve the efficiency of electronic and electromechanical systems.  

    “Implementing coreless transformers in solid-state isolators and relays is truly a game-changer for power engineers; it provides 50 times lower RDS (on) than existing optically controlled solutions. This enables their use in higher-voltage and higher power applications,” said Davide Giacomini, Marketing Director for the Green Industrial Power Division at Infineon Technologies.

    When matched with Infineon’s CoolMOS S7 switch, the isolator drivers enable switching designs with a much lower resistance compared to optically driven solid-state solutions. This translates to longer lifespans and lower cost of ownership in system designs. As with all solid-state isolators, the devices also offer superior performance compared to electromagnetic relays, including 40 percent lower turn-on power and increased reliability due to elimination of moving parts.

    The family of devices is designed to be compatible with Infineon’s broad switching portfolio including Infineon’s CoolMOS S7, OptiMOS TM and linear FET portfolios.

    Original – Infineon Technologies

    Comments Off on Infineon Technologies Introduced a New Product Family of Solid-State Isolators
  • Infineon Technologies Adds 750V G1 Discrete MOSFET to CoolSiC™ Family

    Infineon Technologies Adds 750V G1 Discrete MOSFET to CoolSiC™ Family

    2 Min Read

    Infineon Technologies AG introduced the 750V G1 discrete CoolSiC™ MOSFET to meet the increasing demand for higher efficiency and power density in industrial and automotive power applications. The product family includes both industrial-graded and automotive-graded SiC MOSFETs that are optimized for totem-pole PFC, T-type, LLC/CLLC, dual active bridge (DAB), HERIC, buck/boost, and phase-shifted full bridge (PSFB) topologies.

    The MOSFETs are ideal for use in both typical industrial applications, such as electric vehicle charging, industrial drives, solar and energy storage systems, solid state circuit breaker, UPS systems, servers/ datacenters, telecom, and in the automotive sector, such as onboard chargers (OBC), DC-DC converters, and many more.

    The CoolSiC MOSFET 750 V G1 technology features excellent RDS (on) x Q fr and superior  RDS (on) x Q oss Figure-of-Merits (FOMs), resulting in ultra-high efficiency in hard-switching and soft-switching topologies respectively. Its unique combination of high threshold voltage (V GS(th), Typ. of 4.3 V) with low Q GD/Q GS ratio ensures high robustness against parasitic turn-on and enables unipolar gate driving, leading to increased power density and low cost of the systems.

    All devices use Infineon’s proprietary die-attach technology which delivers outstanding thermal impedance for equivalent die sizes. The highly reliable gate oxide design combined with Infineon’s qualification standards delivers robust and long-term performance.

    With a granular portfolio ranging from 8 to 140 mΩ RDS (on) at 25°C, this new CoolSiC MOSFET 750 V G1 product family meets a wide range of needs. Its design ensures lower conduction and switching losses, boosting overall system efficiency.

    Its innovative packages minimize thermal resistance, facilitate improved heat dissipation, and optimize in-circuit power loop inductance, thereby resulting in high power density and reduced system costs. It’s important to note that this product family features the cutting-edge QDPAK top-side cooled package.

    Original – Infineon Technologies

    Comments Off on Infineon Technologies Adds 750V G1 Discrete MOSFET to CoolSiC™ Family
  • Arrow Electronics and Infineon Technologies Deliver 30kW DC Fast Charger Reference Platform

    Arrow Electronics and Infineon Technologies Deliver 30kW DC Fast Charger Reference Platform

    2 Min Read

    Arrow Electronics, Inc. and its engineering services company, eInfochips, are working with Infineon Technologies AG to help eInfochips’ customers accelerate the development of electric vehicle (EV) chargers.

    Development of EV chargers, especially DC “fast chargers,” is becoming increasingly challenging to equipment manufacturers due to several factors, such as lack of prior experience, stringent functional safety and reliability requirements, and a fledgling support network. The collaboration between Arrow and Infineon aims to help innovators navigate these challenges while accelerating time-to-market.

    As part of the collaboration, Arrow’s High Power Center of Excellence has developed a 30kW DC fast charger reference platform. This includes Infineon’s 1200V CoolSiC™ Easy power modules and also hardware design, embedded firmware, bi-directional charging support and energy metering functionality.

    “Combining Arrow’s strength in components, engineering and design services with Infineon’s innovative products will help customers accelerate their design and speed to market in e-mobility applications,” said Murdoch Fitzgerald, vice president, global engineering and design services at Arrow. “Customers can rely on this collaboration to deliver innovative and leading edge DC faster chargers, accelerate and de-risk design cycles, and get access to a world-class support team enabling them to plan and manage their product roadmap and lifecycles.”

    “Infineon is on a drive towards decarbonization and digitalization with our ecosystem partners, and this collaboration with Arrow is a testament to this mission,” said Shri Joshi, vice president of Green Industrial Power, Infineon Technologies Americas. “The joint 30kW DC fast charger reference platform, which includes Infineon’s latest power modules and devices, will help our customers bring more fast chargers to market as the future moves to electrical vehicles. We look forward to this ongoing collaboration to support our customer base.”

    The first reference design from this collaboration, a production-grade 30kW DC fast charger reference development platform, is being demonstrated at Applied Power Electronics Conference, Feb. 25-29, in Long Beach, Calif.

    Original – Arrow Electronics

    Comments Off on Arrow Electronics and Infineon Technologies Deliver 30kW DC Fast Charger Reference Platform