-
Power components are evolving to meet the increasing demands for higher efficiency, smaller size and greater performance in power electronic systems. To provide system designers with a wide range of power solutions, Microchip Technology announced its portfolio of IGBT 7 devices offered in different packages, multiple topologies, and current and voltage ranges.
Featuring increased power capability, lower power losses and compact device sizes, this new portfolio is designed to meet high-growth market segments such as sustainability, E-Mobility and data centers. These high-performance IGBT 7 devices are key building blocks for power applications in solar inverters, hydrogen ecosystems, commercial and agricultural vehicles and More Electric Aircraft (MEA).
Designers can select a suitable power solution based on their requirements. The IGBT 7 devices are offered in standard D3 and D4 62 mm packages, as well as SP6C, SP1F and SP6LI packages. Many configurations are available in the following topologies: three-level Neutral-Point Clamped (NPC), three-phase bridge, boost chopper, buck chopper, dual-common source, full-bridge, phase leg, single switch and T-type. Devices are available with voltages ranging from 1200V to 1700V and current ranging from 50A to 900A.
“The versatile IGBT 7 portfolio combines ease of use and cost efficiency with higher power density and reliability, offering our customers maximum flexibility. These products are designed for general industrial applications as well as specialized aerospace and defense applications,” said Leon Gross, corporate vice president of Microchip’s discrete product group. “Additionally, our power solutions can be integrated with Microchip’s broad range of FPGAs, microcontrollers (MCUs), microprocessors (MPUs), dsPiC® Digital Signal Controllers (DSCs) and analog devices to provide a comprehensive system solution from one supplier.”
The lower on-state IGBT voltage (Vce), improved antiparallel diode (lower Vf) and increased current capability can enable lower power losses, higher power density and higher system efficiency. The lower-inductance packages, combined with the higher overload capability at Tvj −175°C, make these devices excellent options for creating rugged and high-reliability aviation and defense applications—such as propulsion, actuation and power distribution—at a lower system cost.
For motor control applications where enhanced controllability of dv/dt is important, the IGBT 7 devices are designed to offer freewheeling softness for efficient, smooth and optimized driving of switches. These high-performance devices also aim to improve system reliability, reduce EMI and minimize voltage spikes.
Original – Microchip Technology
-
LATEST NEWS / PRODUCT & TECHNOLOGY3 Min Read
The reliability and performance of Electric Vehicle (EV) chargers are critical to drive global market adoption. EV manufacturers are focused on delivering the most robust, weather-resistant and user-friendly EV chargers. To accelerate the time to market of an EV charger, Microchip Technology announced three flexible and scalable EV Charger Reference Designs including a Single-Phase AC Residential, a Three-Phase AC Commercial with Open Charge Point Protocol (OCPP) and System-on-Chip (SoC) and a Three-Phase AC Commercial with OCPP and Display.
Most of the active components for the EV charger reference designs are available from Microchip, including the microcontroller (MCU), analog front-end, memory, connectivity and power conversion. This significantly streamlines the integration process, enabling manufacturers to speed time to market for new charging solutions.
“Microchip’s E-Mobility team is focused on developing reference designs that our customers can directly use and benefit from,” said Joe Thomsen, corporate vice president of Microchip’s digital signal controller business unit. “We want to help our customers shorten design cycles by offering complete solutions such as these new EV charger references designs, while also supplying the hardware, software and technical support.”
Microchip’s EV charger reference designs enable manufacturers to scale depending on the target market with a range of solutions to meet the needs of residential and commercial charging applications. These reference designs offer complete hardware design files and source code with software stacks that are tested and compliant to communication protocols, including OCPP. OCPP offers manufacturers a standard protocol to communicate between the charge point or charging station and a central system. This protocol is designed to enable interoperability of the charging applications regardless of the network or vendor.
The Single-Phase AC Residential EV Charger Reference Design offers a cost-effective and convenient solution for home charging, where a single-phase supply is used. The on-board high-performance energy metering device with automatic calibration simplifies the production process. The design has integrated safety protection features including Protective Earth Neutral (PEN) fault detection and Residual Current Device (RCD) detection.
The Three-Phase AC Commercial with OCPP and Wi-Fi® SoC EV Charger Reference Design is intended for high-end residential and commercial charging stations. It features OCPP 1.6 stack integration for communication with charging networks and Wi-Fi SoC for remote management.
The Three-Phase AC Commercial with OCPP and Display EV Charger Reference Design caters to commercial and public charging stations with a focus on robust operation including a completed architecture review according to UL 2231. It is designed to support up to 22 kW with bidirectional charging capabilities and a modular architecture. The design also features a robust Graphical User Interface (GUI) with a Thin-Film Transistor (TFT) screen and touch input designed to withstand harsh environments.
Navigating the global EV charging landscape is complex and fragmented, but Microchip offers the key technologies and solutions to significantly simplify the design process through implementation. Beyond the reference designs, Microchip supplies the hardware, software and global technical support. To learn more about Microchip’s EV, HEV and PHEV solutions, visit the website.
The EV Reference Designs are supported by MPLAB® X Integrated Development Environment (IDE) to help designers minimize development time, as well as MPLAB Harmony v3 and MPLAB Code Configurator.
Original – Microchip Technology
-
Microchip Technology Incorporated reported results for the three months ended June 30, 2024.
Net sales for the first quarter of fiscal 2025 were $1.241 billion, down 45.8% from net sales of $2.289 billion in the prior year’s first fiscal quarter.
GAAP net income for the first quarter of fiscal 2025 was $129.3 million, or $0.24 per diluted share, down from GAAP net income of $666.4 million, or $1.21 per diluted share, in the prior year’s first fiscal quarter. For the first quarters of fiscal 2025 and fiscal 2024, GAAP net income was adversely impacted by amortization of acquired intangible assets associated with our previous acquisitions.
Non-GAAP net income for the first quarter of fiscal 2025 was $289.9 million, or $0.53 per diluted share, down from nonGAAP net income of $905.3 million, or $1.64 per diluted share, in the prior year’s first fiscal quarter. For the first quarters of fiscal 2025 and fiscal 2024, our non-GAAP results exclude the effect of share-based compensation, other manufacturing adjustments, expenses related to our acquisition activities (including intangible asset amortization, severance, and other restructuring costs, and legal and other general and administrative expenses associated with acquisitions including legal fees and expenses for litigation and investigations related to our Microsemi acquisition), professional services associated with certain legal matters, and losses on the settlement of debt.
For the first quarters of fiscal 2025 and fiscal 2024, our nonGAAP income tax expense is presented based on projected cash taxes for the applicable fiscal year, excluding transition tax payments under the Tax Cuts and Jobs Act. A reconciliation of our non-GAAP and GAAP results is included in this press release.
Microchip announced that its Board of Directors declared a record quarterly cash dividend on its common stock of 45.4 cents per share, up 10.7% from the year ago quarter. The quarterly dividend is payable on September 5, 2024 to stockholders of record on August 22, 2024.
“We delivered June 2024 quarterly results in line with our guidance as we continued to navigate a challenging macro environment in combination with our customers focusing on reducing their inventory positions based on short lead times for our products,” said Ganesh Moorthy, President and Chief Executive Officer. “Our strategic cost management actions have helped maintain financial resilience and operational efficiency in the face of a 6.4% sequential revenue decline this quarter.”
Mr. Moorthy added, “While the ‘green shoots’ we observed last quarter have continued, they have not developed as robustly as anticipated. The macro environment particularly for industrial and automotive markets, especially in Europe and the Americas, continues to be weaker than expected, resulting in an extended period over which the inventory correction is playing out. Despite customers’ short-term focus on reducing inventory, we believe that our expanded portfolio, now spanning 8 to 64-bit processors including FPGAs as well as our analog portfolio, positions us well for sustainable, abovemarket growth across a diverse set of applications.”
Eric Bjornholt, Microchip’s Chief Financial Officer, said, “Despite market challenges, we have maintained our financial health through proactive cost and balance sheet management. While inventory levels exceeded our target range, which is reflective of broader challenging market conditions, we are confident that this inventory positions us well to service customers with short lead times. We believe that our inventory level along with our investment in capacity will allow us to cost-effectively respond when business conditions improve. Our strategy is designed to balance near-term challenges with long-term growth opportunities.”
Mr. Moorthy concluded, “Despite the green shoots we observed last quarter developing slower than expected, we do see additional positive business signals, like an uptick in our Data Center business. While in-quarter orders remain crucial for meeting guidance, as is typical in this high-turns environment, uncertain market conditions add complexity to forecasting. As a result, we anticipate September quarter net sales between $1.12 billion and $1.18 billion. We are navigating these unusual market conditions with a balance of prudence and readiness to be well-positioned to capitalize on upside opportunities. Despite near-term inventory and macro challenges, our design-in pipeline and momentum remains strong across markets, driven by our customers’ innovation focus. This design momentum, amplified by our focus on Total System Solutions and key Megatrends, is our engine for long-term growth.”
Original – Microchip Technology
-
LATEST NEWS2 Min Read
Microchip Technology Incorporated announced that its Board of Directors has appointed Rich Simoncic as Chief Operating Officer. In this position, Mr. Simoncic will report to Ganesh Moorthy, who will remain President and CEO.
Rich Simoncic joined Microchip as a new college graduate in 1989 and has had progressively increasing product development, operational and business unit responsibilities. He founded the analog business at Microchip in 1998 and has been instrumental in building it to a more than $2 billion annual revenue business through a combination of organic efforts as well as acquisitions.
He was promoted to Vice President in 1995, Corporate Vice President in 2001, Senior Vice President in 2019 and Executive Vice President in 2023. He holds a Bachelor’s degree in Electrical Engineering Technology from DeVry Institute of Technology.
“Rich has expanded his role over the last few years, beyond leading our analog businesses, by assisting me with several corporate initiatives, including strategic planning, acquisitions, total system solutions, market megatrends, use of artificial intelligence within Microchip and Investor Relations activities. Going forward, Rich and I will jointly manage the worldwide Microchip enterprise so that we can apply our combined leadership capacity to engage the opportunities and challenges ahead of us,” said Ganesh Moorthy, Microchip’s President and CEO.
Original – Microchip Technology
-
LATEST NEWS4 Min Read
The Biden-Harris Administration announced that the U.S. Department of Commerce and Microchip Technology Inc. have reached a non-binding preliminary memorandum of terms (PMT) to provide approximately $162 million in federal incentives under the CHIPS and Science Act to support the onshoring of the company’s semiconductor supply chain. This investment would enable Microchip to significantly increase its U.S. production of microcontroller units (MCUs) and other specialty semiconductors built on mature-nodes critical to America’s automotive, commercial, industrial, defense, and aerospace industries and create over 700 direct construction and manufacturing jobs.
President Biden signed the CHIPS and Science Act – part of his Investing in America agenda – into law in August 2022, with the goal of strengthening U.S. supply chains, creating good-paying jobs, protecting national security, and advancing U.S. competitiveness. Today’s announcement is the second PMT announcement the Department of Commerce has made under the CHIPS and Science Act.
Microchip’s microcontroller units and mature-node semiconductors are critical components in the production and manufacturing of electric vehicles and other automotives, washing machines, cell phones, airplanes, and the defense-industrial base. Shortages of microcontrollers during the pandemic affected over 1% of global GDP. By investing in Microchip, the Biden-Harris Administration would help advance U.S. economic and national security by further securing a reliable, domestic supply of these chips.
The approximately $162 million in proposed CHIPS funding would be split across two projects: approximately $90 million to modernize and expand a fabrication facility in Colorado Springs, Colorado, and approximately $72 million to expand a fabrication facility in Gresham, Oregon. The projects are estimated to nearly triple the output of semiconductors the company produces at these sites, decreasing its reliance on foreign foundries and strengthening supply chain resilience, and creating good-paying jobs in construction and manufacturing.
“One of the objectives of the CHIPS and Science Act is to address the semiconductor supply chain shortages we saw during the pandemic that put our national security at risk and led to furloughed auto workers and higher prices for consumers. Today’s announcement with Microchip is a meaningful step in our efforts to bolster the supply chain for legacy semiconductors that are in everything from cars, to washing machines, to missiles,” said Secretary of Commerce Gina Raimondo. “With this proposed investment, President Biden is delivering on his promise to rebuild America’s semiconductor supply chain, creating a more secure defense industrial base, lower prices for Americans, and over 700 jobs across Colorado and Oregon.”
“This manufacturing investment in Oregon and Colorado will advance the President’s goal of making semiconductors in America again and reducing reliance on global supply chains that led to price spikes and long wait lines for everything from autos to washing machines during the pandemic,” said White House National Economic Advisor Lael Brainard.
“This proposed investment and others like it will help ensure that U.S. companies have a stable supply of the critical chip components they need to keep their factories running,” said Under Secretary of Commerce for Standards and Technology and NIST Director Laurie E. Locascio. “This is an example of how government and industry can work together to strengthen our economy, improve our national security, and increase the supply of high-quality jobs for American workers.”
“Microchip Technology manufactures semiconductors that are the backbone of electronic applications across vital industries like aerospace and defense, automotive, and medical. Microchip’s fabs in Colorado and Oregon, among others, perform specialized manufacturing as well as additional reliability and safety qualification for products designed for such mission-critical markets,” said Ganesh Moorthy, President and CEO of Microchip. “The funding Microchip is proposed to receive from the CHIPS and Science Act would be a direct investment to strengthen our national and economic security. As a US-based company, Microchip’s operations will continue to bolster the national semiconductor supply chain, as well as develop and expand our workforce.”
As explained in the Department’s first Notice of Funding Opportunity, the Department may offer applicants a PMT on a non-binding basis after satisfactory completion of the merit review of a full application. The PMT outlines key terms for a CHIPS incentives award, including the amount and form of the award.
After the PMT is signed, the Department begins a comprehensive due diligence process on the proposed project and other information contained in the application. After satisfactory completion of the due diligence phase, the Department may enter into final award documents with the applicant. Terms of the final award documents are subject to negotiations with the applicant and may differ from the terms of the PMT.
Original – U.S. Department of Commerce
-
With UK and European companies seeking advanced technology to solve challenges in communications, IoT and automotive applications, many are looking for local support from major solution vendors. Microchip Technology Inc. announced the inauguration of a major new facility at Cambridge Research Park, Cambridge, UK.
At the heart of Microchip’s plans to develop more of its smart, connected and secure solutions in the UK area, the new center will add significant R&D space, which will allow Microchip’s business units to further develop their already broad offering. The new site will help Microchip improve its focus on the needs of several of its highest priority markets, such as IoT, automotive, industrial and consumer.
To gain immediate benefit from the facility, many of Microchip’s highly skilled development engineers and other staff will transfer from the company’s Ely site, with plans in hand to boost the number of employees at the Cambridge site over time.
“The Cambridge site is ideally situated in one the world’s top technology areas and will enable us to attract top talent to build state of the art products and serve our customer base,” said Sumit Mitra, senior corporate vice president of Microchip’s 32-bit microcontroller, microprocessor, wireless, aerospace and development tools business units.
“We have already onboarded a large number of talented and experienced engineers for the new center and expect that the new opportunities we will offer—to develop exciting solutions for the most significant and dynamic technology markets—will further attract the highly talented staff we need.”
“The facility is intended to become a premier Microchip engineering center, employing 200 highly skilled silicon engineering staff and advanced laboratories,” said Neel Das, senior director of Microchip’s 32-bit microcontroller business unit. “Establishing the new facility in Cambridge means we can meet this target by tapping into the wealth of engineering talent that exists in the area. The Cambridge Research Park is a hub of innovation and an excellent venue to develop the high-tech solutions on which we have built our reputation.”
The three-story building will offer approximately 10,000 square feet per floor, providing space to support multiple product lines including 16- and 32-bit microcontrollers, 32-bit microprocessors and wireless connectivity products plus technology development, physical design and human resource support.
Original – Microchip Technology