Navitas Semiconductor Tag Archive

  • Navitas Presents GaNSafe™ - World’s Most Protected GaN Power Semiconductor

    Navitas Presents GaNSafe™ – World’s Most Protected GaN Power Semiconductor

    4 Min Read

    Navitas Semiconductor announced the world-wide launch of GaNSafe™, a new, high-performance wide bandgap power platform at a special customer, partner and press event in Taiwan. Navitas has optimized its 4th-generation gallium nitride technology for demanding, high-power applications in data centers, solar / energy storage and EV markets, where efficiency, power density and robust & reliable operation are critical.

    At the worldwide launch event at the Marriot Taipei, Navitas’ David Carroll, Sr. VP Worldwide Sales, and Charles Bailley, Sr. Director Business Development will introduce Navitas and the new GaNSafe platform to an invited VIP audience of over 50 high-ranking customer attendees, plus industry partners and international media.

    The new 4th-generation GaN power ICs are manufactured in Hsinchu, by long-term Navitas partner TSMC. Navitas is grateful to Dr. RY Su, Manager of GaN Power Technology at TSMC, who will make a special presentation on the future of GaN at the GaNSafe launch.

    Navitas’ GaNFast™ power ICs integrate gallium nitride (GaN) power and drive, with control, sensing, and protection to enable faster charging, higher power density, and greater energy savings, with over 100,000,000 units shipped, and an industry-first 20-year warranty. Now, the new GaNSafe platformhas been engineered with additional, application-specific protection features, functions and new, high-power packaging to deliver enabling performance under grueling high-temperature, long-duration conditions.

    The initial, high-power 650/800 V GaNSafe portfolio covers a range of RDS(ON) from 35 to 98 mΩ in a novel, robust, and cool-running surface-mount TOLL package, to address applications from 1,000 to 22,000 W. GaNSafe integrated features and functions include:

    • Protected, regulated, integrated gate-drive control, with zero gate-source loop inductance for reliable high-speed 2 MHz switching capability to maximize application power density.
    • High-speed short-circuit protection, with autonomous ‘detect and protect’ within 50 ns – 4x faster than competing discrete solutions.
    • Electrostatic discharge (ESD) protection of 2 kV, compared to zero for discrete GaN transistors.
    • 650 V continuous, and 800 V transient voltage capability to aid survival during extraordinary application conditions.
    • Easy-to-use, complete, high-power, high-reliability, high-performance power IC with only 4 pins, to accelerate customer designs.
    • Programmable turn-on and turn-off speeds (dV/dt) to simplify EMI regulatory requirements.

    Unlike discrete GaN transistor designs, with voltage spikes, undershoot and specification breaches, GaNSafe delivers an efficient, predictable, reliable system. GaNSafe’s robust 4-pin TOLL package has achieved the tough IPC-9701 mechanical reliability standard, and delivers simple, strong, dependable performance as compared to multi-chip modules which require 3x as many connections, and have poor cooling capability.

    Navitas’ market-specific system design centers offer complete platform designs with benchmark efficiency, density and system cost using GaNSafe products to accelerate customer time-to-revenue and maximize chance of first-time-right designs. These system platforms include complete design collateral with fully-tested hardware, embedded software, schematics, bill-of-materials, layout, simulation and hardware test results.  Examples of system platforms enabled by GaNSafe technology include:

    1. Navitas’ CRPS185 data center power platform, that delivers a full 3,200 W of power in only 1U (40 mm) x 73.5mm x 185 mm (544 cc), achieving 5.9 W/cc, or almost 100 W/in3 power density. This is a 40% size reduction vs, the equivalent legacy silicon approach and reaches over 96.5% efficiency at 30% load, and over 96% stretching from 20% to 60% load, creating a ‘Titanium Plus’ benchmark.
    2. Navitas’ 6.6 kW 3-in-1 bi-directional EV on-board charger (OBC) with 3 kW DC-DC. This 96%+ efficient unit has over 50% higher power density, and with efficiency over 95%, delivers up to 16% energy savings as compared to competing solutions.

    “Our original GaNFast and GaNSense technologies have set the industry standard for mobile charging, establishing the first market with high-volume, mainstream GaN adoption to displace silicon,” said Gene Sheridan, CEO and co-founder. “GaNSafe takes our technology to the next level, as the most protected, reliable and safe GaN devices in the industry, and now also targeting 1-22 kW power systems in AI-based data centers, EV, solar and energy storage systems. Customers can now achieve the full potential of GaN in these multi-billion dollar markets demanding the highest efficiency, density and reliability.”

    The GaNSafe portfolio is available immediately to qualified customers with mass production expected to begin in Q4 2023. 40 customer projects are already in progress with GaNSafe in data center, solar, energy storage and EV applications, contributing to Navitas’ $1 billion customer pipeline.

    Original – Navitas Semiconductor

    Comments Off on Navitas Presents GaNSafe™ – World’s Most Protected GaN Power Semiconductor
  • Navitas To Reveal New Power Platform at SEMICON Taiwan

    Navitas To Reveal New Power Platform at SEMICON Taiwan

    2 Min Read

    Navitas Semiconductor will reveal a new, high-performance wide bandgap power platform as part of its display at one of Asia’s most prestigious electronics exhibitions – sponsored by Navitas – SEMICON Taiwan 2023, from September 6th-8th.

    Visitors will discover the latest gallium nitride (GaN) GaNFast™ power ICs integrate gallium nitride (GaN) power and drive, with control, sensing, and protection to enable faster charging, higher power density, and greater energy savings. Complementary GeneSiC™ power devices are optimized high-power, high-voltage, and high-reliability silicon carbide (SiC) solutions.

    Additionally, Navitas will showcase cutting-edge, power-system platforms to dramatically accelerate customer developments, minimize time-to-market, and set new industry benchmarks in energy efficiency, power density and system cost. These system platforms include complete design collateral with fully-tested hardware, embedded software, schematics, bill-of-materials, layout, simulation and hardware test results.  Examples include:

    1. Navitas’ CRPS185 data center power platform, that delivers a full 3,200 W of power in only 1U (40 mm) x 73.5mm x 185 mm (544 cc), achieving 5.9 W/cc, or almost 100 W/in3 power density. This is a 40% size reduction vs, the equivalent legacy silicon approach and reaches over 96.5% efficiency at 30% load, and over 96% stretching from 20% to 60% load, creating a ‘Titanium Plus’ benchmark.
    2. Navitas’ 6.6 kW 3-in-1 bi-directional EV on-board charger (OBC) with 3 kW DC-DC. This 96%+ efficient unit has over 50% higher power density, and with efficiency over 95%, delivers up to 16% energy savings as compared to competing solutions.

    As part of SEMICON’s Power and Opto Semiconductor Forum, Navitas’ Charles Bailley, Senior Director of Business Development, will present “GaN Power ICs Increase Power Density in EV Power Systems”. The presentation is at 2pm, on September 6th, in room 402, 4F, TaiNEX 1.

    “Breakthrough high efficiency, high reliability, and high power density – all from the new GaN power IC platform,” said Kevin 汪時民 Wang, Manager of Navitas Taiwan. “The new platform announcement matches SEMICON’s theme of ‘Innovating the World through Semiconductors’ and our own mission to ‘Electrify Our World™’.”

    Original – Navitas Semiconductor

    Comments Off on Navitas To Reveal New Power Platform at SEMICON Taiwan
  • Navitas “Titanium Plus” Server Power Platform Drives AI Revolution

    Navitas “Titanium Plus” Server Power Platform Drives AI Revolution

    3 Min Read

    Navitas Semiconductor announced that its CRPS185 3,200 W “Titanium Plus” server reference design not only surpasses the stringent 80Plus Titanium efficiency requirements, but also effectively satisfies the increasing power demands of AI data center power.

    The rapid development and deployment of artificial intelligence (AI) including OpenAI’s ChatGPT, Microsoft’s Bing with AI, and Google’s Bard, has penetrated all aspects of people’s lives. New power-hungry AI processors like NVIDIA’s DGX GH200 ‘Grace Hopper’ demand up to 1,600 W each, are driving power-per-rack specifications from 30-40 kW up to 100 kW per cabinet. Meanwhile, with the global focus on energy conservation and emission reduction, as well as the latest European regulations, server power supplies must exceed the 80Plus ‘Titanium’ efficiency specification.

    Navitas’ reference designs dramatically accelerate customer developments, minimize time-to-market, and set new industry benchmarks in energy efficiency, power density and system cost, enabled by GaNFast power ICs. These system platforms include complete design collateral with fully-tested hardware, embedded software, schematics, bill-of-materials, layout, simulation and hardware test results.

    In this case, the ‘Common Redundant Power Supply’ (CRPS) form-factor specification was defined by the hyperscale Open Compute Project, including Facebook, Intel, Google, Microsoft, and Dell. Now, Navitas’ CRPS185 platform delivers a full 3,200 W of power in only 1U (40 mm) x 73.5mm x 185 mm (544 cc), achieving 5.9 W/cc, or almost 100 W/in3 power density. This is a 40% size reduction vs, the equivalent legacy silicon approach and easily exceeds the Titanium efficiency standard, reaching over 96.5% at 30% load, and over 96% stretching from 20% to 60% load, creating a ‘Titanium Plus’ benchmark, critical for data center operating models.

    The CRPS185 uses the latest circuit designs including an interleaved CCM totem-pole PFC with full-bridge LLC. The critical components are Navitas’ new 650V GaNFast power ICs, with robust, high-speed integrated GaN drive to address the sensitivity and fragility issues associated with discrete GaN chips. Additionally, GaNFast power ICs offer extremely low switching losses, with a transient-voltage capability up to 800 V, and other high-speed advantages such as low gate charge (Qg), output capacitance (COSS) and no reverse-recovery loss (Qrr). As high-speed switching reduces the size, weight and cost of passive components in a power supply, Navitas estimates that GaNFast power ICs save 5% of the LLC-stage system material cost, plus $64 per power supply in electricity over 3 years.

    Compared to traditional ‘Titanium’ solutions, the Navitas CRPS185 3,200 W ‘Titanium Plus’ design running at a typical 30% load can reduce electricity consumption by 757 kWh, and decrease carbon dioxide emissions by 755 kg over 3 years. This reduction is equivalent to saving 303 kg of coal. Not only does it help data center clients achieve cost savings and efficiency improvements, but it also contributes to the environmental goals of energy conservation and emission reduction.

    In addition to data center servers, this solution can also be widely used in applications such as switch/router power supplies, communications, and other computing applications.

    “The popularity of AI applications like ChatGPT is just the beginning. As data center rack power increases by 2x-3x, up to 100 kW, delivering more power in a smaller space is key,” said Charles Zha, VP and GM of Navitas China. “We invite power designers and system architects to partner with Navitas and discover how a complete roadmap of high efficiency, high power density designs can cost-effectively, and sustainably accelerate their AI server upgrades.”

    Original – Navitas Semiconductor

    Comments Off on Navitas “Titanium Plus” Server Power Platform Drives AI Revolution
  • Frost & Sullivan WBG Semiconductors Think Tank Overcoming Challenges, Unlocking Potential

    Frost & Sullivan WBG Semiconductors Think Tank: Overcoming Challenges, Unlocking Potential

    2 Min Read

    Wide Bandgap (WBG) semiconductors play a strategic role in driving innovation and creating energy efficient and high-performance electronics. Demand for these semiconductors is fueled by sustainability, industry advancements, and advanced connectivity.

    However, meeting this demand requires addressing challenges like cost, technology reliability, and geo-politic chaos among others. While the global WBG semiconductor industry is poised for unprecedented growth in the next 10 years, it would be critical to prioritize the opportunities, and effectively tackle the challenges to meet the short-term and long-term demands.

    Join Frost & Sullivan for an engaging and thought-provoking Think Tank on “WBG Semiconductors: Overcoming Challenges, Unlocking Potential” on July 28, at 10:00 AM, EDT. The distinguished panel of semiconductor professionals will share their expertise and experiences and will address pressing questions like:

    • How can WBG semiconductors play a central role in driving sustainability goals?
    • How can WBG semiconductors contribute to improving efficiency in renewable energy systems and energy infrastructure?
    • What role would regulations and standards play in driving the adoption of WBG semiconductors?
    • Electric vehicles (EVs) have long been strong advocates for WBG semiconductors – What are the current opportunities beyond EV that demand immediate action?

    Mark your calendars to engage in discussion with:

    • Prabhu Karunakaran, Industry Principal at Frost & Sullivan
    • Jonathan Robinson, VP Research, Power and Energy at Frost & Sullivan
    • Stephen Oliver, Marketing & Investor Relations at Navitas Semiconductor
    • Alexey Cherkasov, Marketing & Sales Director at Leapers Semiconductor

    Original – Frost & Sullivan

    Comments Off on Frost & Sullivan WBG Semiconductors Think Tank: Overcoming Challenges, Unlocking Potential
  • Navitas Confirms Continued Supply of Leading-Edge Gallium Nitride Power ICs

    Navitas Confirms Continued Supply of Leading-Edge Gallium Nitride Power ICs

    1 Min Read

    Navitas Semiconductor has confirmed continued supply of leading-edge gallium nitride (GaN) power ICs. On July 3rd, 2023, China’s Ministry of Commerce announced it would put in place certain restrictions on the exporting of gallium and germanium, among other materials, starting in August. Navitas’ wafer technology is ‘GaN-on-Si’. The wafer subcontract manufacturer has verified that their production remains unaffected by the export restrictions, given multiple sources of gallium world-wide.

    As a result, Navitas does not expect customer deliveries to be impacted or its business to be adversely affected by the export restrictions.

    Significant sources of gallium are available worldwide, as it is a natural by-product in the production of other metals such as aluminum. Navitas does not use germanium in any product.

    Original – Navitas Semiconductor

    Comments Off on Navitas Confirms Continued Supply of Leading-Edge Gallium Nitride Power ICs
  • Navitas and Plexim Accelerate Time-to-Market with PLECS Models for Next-generation GeneSiC™ Power Semiconductors

    Navitas and Plexim Accelerate Time-to-Market with PLECS Models for Next-generation GeneSiC™ Power Semiconductors

    2 Min Read

    Navitas Semiconductor and Plexim GmbH announced a partnership to release GeneSiC G3™ SiC MOSFET and Gen 5 MPS diode PLECS thermal loss models for highly-accurate simulations of complete power electronics systems.  

    Power designers can simulate power and thermal losses in various soft- and hard-switching applications. Proprietary GeneSiC trench-assisted planar-gate MOSFET technology delivers the lowest RDS(ON) at high temperature and the highest efficiency at high speeds, and new MPS diodes with ‘low-knee’ characteristics drive unprecedented, industry-leading levels of performance, robustness and quality.

    “Accurate, empirically-based simulation models maximize the chance of first-time-accurate designs, accelerating time-to-market and time-to-revenue,” noted Dr. Ranbir Singh, Navitas EVP for the GeneSiC business line. “For the power designer, understanding the leading-edge performance of GeneSiC MOSFETs and MPS diodes with detailed device characteristics, plus power, efficiency and thermal analysis is a critical competitive advantage.”

    “The intuitive and highly-efficient PLECS lookup-table based approach to simulating thermal semiconductor losses in complex power electronic circuits is key,” said Kristofer Eberle, Plexim, North America. “Unlike legacy modeling approaches that are not well-suited to new wide bandgap materials, PLECS uses a simplified, but accurate behavioral description to highlight the superior performance of the GeneSiC MOSFETs.”

    PLECS models for GeneSiC MOSFETs and MPS diodes are available via genesicsemi.com.

    Original – Navitas Semiconductor

    Comments Off on Navitas and Plexim Accelerate Time-to-Market with PLECS Models for Next-generation GeneSiC™ Power Semiconductors
  • Navitas Initiates Strategic Manufacturing Investments

    Navitas Initiates Strategic Manufacturing Investments

    2 Min Read

    Navitas Semiconductor announced the first in a series of strategic manufacturing investments, to increase control, reduce costs and enhance revenue capacity for its GeneSiC silicon carbide (SiC) power semiconductors.

    An initial $20 million investment enables a three-reactor SiC epi-growth facility at the company’s Torrance, CA headquarters. Adding a SiC epitaxial (or “epi”) layer onto a raw SiC wafer is the first step in manufacturing individual SiC power devices. The first AIXTRON G10-SiC epitaxy reactor, with 6” and 8” wafer capability, is expected to be fully qualified and in production in 2024. Navitas views the epi-growth services to be provided by its new facility as a critical process step that could support up to an additional $200 million in annual production. The company expects to continue the use of third-party vendors for additional epi-growth, wafer fabrication and assembly operations.

    “We are proud that an important technology innovator such as Navitas chose our new G10-SiC to further accelerate the adoption of SiC in the growing market for energy efficient power devices. This is especially significant as AIXTRON and Navitas are both firm believers and pioneers in the unstoppable advance of GaN and SiC over legacy silicon. It is through partnerships like ours, where highly innovative companies work together, that this important transition can be realized,” says Dr. Felix Grawert, CEO and President of AIXTRON SE.

    “Adding a high-quality SiC epi-layer onto a raw SiC wafer is a critical process step prior to individual device manufacturing, and adding the AIXTRON in-house epi capability to existing subcontract process flows expands available capacity, lowers finished wafer cost, increases quality and reduces cycle times”, said Dan Kinzer, Navitas COO / CTO and co-founder. “The development and manufacturing business partnership with Aixtron includes ongoing technical and co-development support.”

    Navitas’ investment in internal epi capacity is one of several initiatives in support of the company’s recently-announced $760M customer pipeline of estimated potential future business, based on expressed customer interest for qualified programs. While the conversion of this pipeline into orders or shipments depends on many factors in addition to possessing available capacity, the company expects its epi capacity expansion will provide a favorable return on investment under most anticipated planning scenarios.

    Navitas recently completed an $80 million follow-on common stock offering and plans to use proceeds from the offering for strategic manufacturing investments, among other possible uses, including working capital and general corporate purposes.

    Original – Navitas Semiconductor

    Comments Off on Navitas Initiates Strategic Manufacturing Investments
  • Navitas Launches into High-Power Markets with GeneSiC SiCPAK™ Modules and Accelerates Bare-Die Sales

    Navitas Launches into High-Power Markets with GeneSiC SiCPAK™ Modules and Accelerates Bare-Die Sales

    2 Min Read

    Navitas Semiconductor, the only pure-play, next-generation power semiconductor company, announced their expanded portfolio into higher power markets with their leading-edge silicon carbide (SiC) power products in SiCPAK™ modules and bare die.

    Target applications cover centralized and string solar inverters, energy storage systems (ESS), industrial motion, electric vehicle (EV) on-board chargers, EV roadside fast chargers, wind energy, UPS, bi-directional microgrids, DC-DC converters, and solid-state circuit breakers.

    Ranging from 650 V to 6,500 V, Navitas has the widest range of SiC technology. From an original line-up of discrete packages – from 8×8 mm surface-mount QFNs to through-hole TO-247s – the GeneSiC SiCPAK is an initial, direct entry point into higher-power applications. A comprehensive power-module roadmap, with high-voltage SiC MOSFETs and MPS diodes, GaN power ICs, high-speed digital isolators and low-voltage silicon control ICs is being mapped out.

    Dr. Ranbir Singh, Navitas EVP for SiC noted, “With a complete portfolio of leading-edge power, control and isolation technology, Navitas will enable customers to accelerate the transition from fossil fuels, and legacy silicon power products to new, renewable energy sources and next-generation semiconductors, with more powerful, more efficient, faster-charging systems.”

    SiCPAK™ modules employ ‘press-fit’ technology to offer compact form factors for power circuits and deliver cost-effective, power-dense solutions to end users. The modules are built upon GeneSiC die that have already made a mark in terms of superior performance, reliability, and ruggedness. Examples include a SiCPAK half-bridge module, rated at 6 mOhm, 1,200 V with industry-leading trench-assisted planar-gate SiC MOSFET technology. Multiple configurations of SiC MOSFETs and MPS diodes will be available to create application-specific modules for superior system performance. The initial release will include 1,200 V-rated half-bridge modules in 6, 12, 20, and 30mOhm ratings.

    Within the lead-free SiCPAK, each SiC chip is silver (Ag) sintered to the module’s substrate for superior cooling and reliability. The substrate itself is ‘direct-bonded copper’ (DBC) and manufactured using an active-metal brazing (AMB) technique on silicon-nitride (Si3N4) ceramics, ideal for power-cycling applications. This construction delivers excellent strength and flexibility, fracture resistance, and good thermal conductivity for cool, reliable, long-life operation.

    For customers who prefer to make their own high-power modules, all GeneSiC MOSFET and MPS diodes are available in bare die format, with gold (Au) and aluminum (Al) top-side metalizations.

    Original – Navitas Semiconductor

    Comments Off on Navitas Launches into High-Power Markets with GeneSiC SiCPAK™ Modules and Accelerates Bare-Die Sales