Si Tag Archive

  • Alpha and Omega Semiconductor Released Two αMOS5™ 600V FRD SJ MOSFETs

    Alpha and Omega Semiconductor Released Two αMOS5™ 600V FRD SJ MOSFETs

    3 Min Read

    Alpha and Omega Semiconductor Limited announced the release of two αMOS5™ 600V FRD Super Junction MOSFETs. αMOS5™ is AOS’s market and application-proven high voltage MOSFET platform, designed to meet the high efficiency and high-density needs of servers, workstations, telecom rectifiers, solar Inverters, EV charging, motor drives and industrial power applications.

    The design of today’s mid-high power switched-mode power supply (SMPS) and solar inverter systems boil down to four major challenges – higher efficiency, higher density, lower system costs, and uncompromised robustness. High Voltage Super Junction MOSFETs are dominant the choice for topologies such as single/interleaved/dual boost/CrCM TP PFCs, LLC, PSFB, multi-level NPC/ANPC and so forth.

    αMOS5™ has been the leading High Voltage Super Junction solution tailored for fast switching, ease-of use and robustness in mission-critical applications. αMOS5™ FRD FETs are engineered with strong intrinsic body diode to handle hard commutation scenarios, when the freewheeling body diode is in reverse recovery due to abnormal operations, such as short-circuit or start-up transients.

    The two products released, the AOK095A60FD (TO-247) and AOTF125A60FDL (TO-220F), are 600V FRD FETs with 95mohm and 125mohm maximum Rdson, respectively. In tests conducted by AOS engineers, the body diodes of these two FRD FETs have survived high di/dt, under abnormal system conditions, even at elevated junction temperatures of up to 150°C. Additionally, AOS tests have shown that these devices’ turn off energy (Eoff) are noticeably lower than the competition’s, which contributes to higher efficiency in light or mid-load conditions.

    “We defined our products for traditional power supplies, as well as DC/DC and DC/AC converters of solar inverters and ESS systems, where bi-directional topologies are needed. As energy storage-ready inverters become the trend and high voltage batteries are utilized increasingly in AC-coupled systems, the AOK095A60FD and AOTF125A60FDL will become industry leading solutions for bi-directional DC/DC and inverter/PFC applications that serve a wide range of power supplies, solar PV inverters, and ESS hybrid converters,” said Richard Zhang, Senior Director of Product Line and Global Power Supply Business at AOS.

    Technical Highlights

    • Rugged, fast recovery diode (FRD) with reduced Qrr for demanding use cases
    • Engineered for both hard and soft switching topologies with ultra-low switching loss
    • Strong UIS and SOA capabilities
    • Engineered to prevent self turn-on
    • Suitable for LLC, PSFB, CrCM Totem-Pole, Multi-level NPC and CrCM H-4/Cyclo Inverter applications

    Original – Alpha and Omega Semiconductor

    Comments Off on Alpha and Omega Semiconductor Released Two αMOS5™ 600V FRD SJ MOSFETs
  • Infineon Introduced 4.5 kV XHP™ 3 IGBT Modules to Fundamentally Change the Landscape for Medium Voltage Drives

    Infineon Introduced 4.5 kV XHP™ 3 IGBT Modules to Fundamentally Change the Landscape for Medium Voltage Drives

    2 Min Read

    The paradigm shift towards offloading complexity to suppliers and adopting smaller IGBT modules is evident in various applications. In response to the global push for downsizing and integration, Infineon Technologies AG introduced the 4.5 kV XHP™ 3 IGBT modules that will fundamentally change the landscape for medium voltage drives (MVD) and transportation applications operating at 2000 to 3300 V AC in 2- and 3-level topologies.

    Applications benefiting from the new devices include large conveyor belts, pumps, high-speed trains, locomotives, as well as commercial, construction and agricultural vehicles (CAV).

    The XHP family comprises a 450 A dual IGBT module with TRENCHSTOP™ IGBT4 and an emitter-controlled diode, and a 450 A double diode module with emitter-controlled E4 Diode. Both modules feature improved isolation of 10.4 kV. Together, they help to simplify paralleling and downsizing without sacrificing efficiency.

    Previously, complex busbars were required to parallelize switching modules, resulting in complicated design efforts and leakage inductance. The innovative design of the XHP family simplifies paralleling by conveniently placing the connections side by side. As a result, only a single straight busbar is required for paralleling. 

    The 4.5 kV XHP family also allows developers to reduce the number of units. Conventional IGBT solutions use multiple single switches and a double diode. With the new devices, however, designs can be reduced to two dual switches and a smaller double diode – a significant step forward in integrated drives.

    The combination of the XHP 3 FF450R45T3E4_B5 dual switch and the DD450S45T3E4_B5 double diode enables significant cost savings and a smaller footprint. For example, Infineon’s previous IGBT solutions required four 140 x 190 mm² or 140 x 130 mm² switches and one 140 x 130 mm² double diode. With the new XHP family, the components can be reduced to two 140 x 100 mm² dual switches and a smaller 140 x 100 mm² double diode.

    The IGBT modules FF450R45T3E4_B5 and DD450S45T3E4_B5 are available now. More information is available at www.infineon.com/XHP.

    Original – Infineon Technologies

    Comments Off on Infineon Introduced 4.5 kV XHP™ 3 IGBT Modules to Fundamentally Change the Landscape for Medium Voltage Drives
  • Power Integrations Released a New Family of Plug-and-Play Gate Drivers for 62 mm SiC MOSFET and IGBT Modules

    Power Integrations Released a New Family of Plug-and-Play Gate Drivers for 62 mm SiC MOSFET and IGBT Modules

    2 Min Read

    Power Integrations announced a new family of plug-and-play gate drivers for 62 mm silicon-carbide (SiC) MOSFET and silicon IGBT modules rated up to 1700 V, with enhanced protection features to ensure safe, reliable operation.

    SCALE™-2 2SP0230T2x0 dual-channel gate drivers deploy short-circuit protection in less than two microseconds, protecting the compact SiC MOSFETs against damaging over-currents. The new drivers also include advanced active clamping (AAC) to protect the switches against over-voltage during turn-off, enabling higher DC link operating voltages.

    Thorsten Schmidt, product marketing manager at Power Integrations, commented: “The 2SP0230T2x0 gate drivers are flexible; the same hardware can be used to drive either SiC MOSFET or IGBT modules. This reduces both system design and sourcing challenges, and the plug-and-play approach speeds development.”

    Ideal for applications such as railway auxiliary converters, offboard EV chargers and STATic synchronous COMpensator (STATCOM) voltage regulators for the power grid, 2SP0230T2x0 gate drivers are based on Power Integrations’ proven SCALE-2 technology, resulting in higher levels of integration, smaller size, more functionality and enhanced system reliability.

    Power Integrations’ compact 134 x 62 mm 2SP0230T2x0 provides reinforced isolation at 1700 V, enabling use for up to 1700 V operation; this is 500 V higher than conventional drivers, which are typically limited to 1200 V.

    Original – Power Integrations

    Comments Off on Power Integrations Released a New Family of Plug-and-Play Gate Drivers for 62 mm SiC MOSFET and IGBT Modules
  • Alpha and Omega Semiconductor Released 80V and 100V MOSFETs in Automotive TOLL Package

    Alpha and Omega Semiconductor Released 80V and 100V MOSFETs in Automotive TOLL Package

    2 Min Read

    Alpha and Omega Semiconductor Limited (AOS) announced the release of its state-of-the-art automotive TO-Leadless (TOLL) package for the company’s automotive grade 80V and 100V MOSFETs. AOS’s TOLL package is developed to optimize the company’s power semiconductors as essential components in the evolution of e-mobility such as 2- and 3-wheel and other light vehicles. This new package helps designers meet the ongoing trend to electrify vehicles with the latest battery technology to meet clean energy zero-emission goals.

    These capabilities make AOS 80V and 100V MOSFETs ideally suited for automotive BLDC motor and battery management applications for e-mobility. The AOS automotive TOLL package is designed to achieve the highest current capability using AOS’s innovative approach which utilizes advanced clip technology to achieve a high in-rush current rating.

    In addition, AOS TOLL packaging with clip technology offers a very low package resistance and inductance, enabling improved EMI performance compared to other TOLL packages utilizing standard wire-bonding technology. With the combination of low ohmic and high current capability, utilizing AOS TOLL packaging also allows designers to reduce the number of parallel MOSFETs in high current applications. This, in turn, helps to enable higher power density requirements without compromising reliability in applications where robustness and reliability are key design objectives.

    Providing a more compact solution for space-constrained designs, the AOTL66810Q (80V) and AOTL66912Q (100V) have a 30 percent smaller footprint compared to a TO-263 (D2PAK) package. These new devices in TOLL packaging are qualified to AEC-Q101, PPAP capable, and are manufactured in IATF 16949 certified facilities making them ideally suited for demanding application requirements in e-mobility. AOS TOLL devices are also compatible with automated optical inspection (AOI) manufacturing requirements.

    “Using the AOS Automotive TOLL package with clip technology offers significant performance improvements in a robust package. The advanced technologies in our AOTL66810Q and AOTL66912Q MOSFETs will help simplify new designs allowing them to reduce the number of devices in parallel while providing the necessary higher current capability to enable overall system cost savings,” said Peter H. Wilson, Marketing Sr. Director of MOSFET product line at AOS.

    Part NumberVDS (V)VGS (±V)Continuous Drain Current (A)Pulsed Drain Current (A)RDS(ON) Max (mOhms) @10V
    @25°C@100°C@25°C
    AOTL66810Q802044524717801.25
    AOTL66912Q1002037026914801.7

    Original – Alpha and Omega Semiconductor

    Comments Off on Alpha and Omega Semiconductor Released 80V and 100V MOSFETs in Automotive TOLL Package
  • ROHM and Toshiba to Collaborate in Manufacturing Si and SiC Power Devices

    ROHM and Toshiba to Collaborate in Manufacturing Si and SiC Power Devices

    3 Min Read

    A plan by ROHM Co., Ltd. and Toshiba Electronic Devices & Storage Corporation to collaborate in the manufacture and increased volume production of power devices has been recognized and will be supported by the Ministry of Economy, Trade and Industry as a measure supporting the Japanese Government’s target of secure and stable semiconductor supply.

    ROHM and Toshiba Electronic Devices & Storage will respectively make intensive investments in silicon carbide (SiC) and silicon (Si) power devices, effectively enhance their supply capabilities, and complementally utilize other party’s production capacity.

    Power devices are essential components for supplying and managing power supply in all kinds of electronic equipment, and for achieving a carbon-free, carbon-neutral society. Current demand is expected to see continued growth.

    In automotive applications, development of more efficient, smaller and lighter electric powertrains has advanced alongside the rapid expansion in vehicle electrification. In industrial applications, stable supply of power devices and improved characteristics are widely required to support increasing automation and higher efficiency requirements.

    Against this backdrop, ROHM has formulated a management vision, “We focus on power and analog solutions and solve social problems by contributing to our customers’ needs for energy savings and miniaturization of their products.,” and accelerates its efforts for a carbon-free. SiC power devices are the keys to energy savings.

    Since the world’s first mass production of SiC MOSFETs, ROHM has been constantly developing industry-leading technologies. Among these are ROHM’s latest 4th Generation SiC MOSFETs that will be adopted for numerous electric vehicles and industrial equipment. As one of its priority projects, ROHM is working on SiC business, which contains aggressive and continuous investment to increase the production capacity of SiC and meet strong demand growth.

    Toshiba Group, with its long-standing Basic Commitment, “Committed to People, Committed to the Future.,” aims to advance the achievement of carbon neutrality and a circular economy. Toshiba Electronic Devices & Storage has for decades supplied Si power devices, mainly for automotive and industrial markets, that have helped to secure energy saving solutions and equipment miniaturization.

    The company started production on a 300mm wafer line last year, and is accelerating investment to enhance production capacity and meet strong demand growth. It is also advancing development of a wider lineup of SiC power devices, especially for automotive and power transmission and distribution applications, taking full advantage of the expertise it has cultivated in railway vehicle applications.

    ROHM has already announced its participation in the privatization of Toshiba, but this investment did not serve as the starting point for manufacturing collaboration between the two companies. Under intensifying international competition in the semiconductor industry, ROHM and Toshiba Electronic Devices & Storage have been considering collaboration in the power device business for some time, and that resulted in the joint application.

    ROHM and Toshiba Electronic Devices & Storage will collaborate in manufacturing power devices, through intensive investments in SiC and Si power devices, respectively, toward enhancing both companies’ international competitiveness. The companies will also seek to contribute to strengthening the resilience of semiconductor supply chains in Japan.

    Original – Toshiba

    Comments Off on ROHM and Toshiba to Collaborate in Manufacturing Si and SiC Power Devices
  • ROHM Expanded the Library of SPICE Model Lineup 

    ROHM Expanded the Library of SPICE Model Lineup 

    2 Min Read

    ROHM has expanded the library of SPICE model lineup for LTspice® of its circuit simulator. LTspice® is also equipped with circuit diagram capture and waveform viewer functions that make it possible for designers to check and verify in advance whether the circuit operation has been achieved as designed.

    In addition to the existing lineup of bipolar transistors, diodes, and MOSFETs, ROHM has added SiC power devices and IGBTs that increases its number of LTspice® models to more than 3,500 for discretes (which can be downloaded from product pages). This brings the amount of coverage of LTspice® models on ROHM’s website to over 80% of all products – providing greater convenience to designers when using circuit simulators that incorporate discrete products, now including power devices.

    In recent years, the increasing use of circuit simulation for circuit design has expanded the number of tools being utilized. Among these, LTspice® is an attractive option for a range of users, from students to even seasoned engineers at well-known companies. To support these and other users, ROHM has expanded its library of LTspice® models for discrete products.

    Besides product pages, ROHM has added a Design Models page in October that allows simulation models to be downloaded directly. Documentation on how to add libraries and create symbols (schematic symbols) is also available to facilitate circuit design and simulation execution.

    Going forward, ROHM will continue to contribute to solving circuit design issues by expanding the number of models compatible with various simulators while providing web tools such as ROHM Solution Simulator to meet growing customer needs.

    Original – ROHM

    Comments Off on ROHM Expanded the Library of SPICE Model Lineup 
  • Infineon Adds a QDPAK Package to Its 650 V CoolMOS CFD7A Family

    Infineon Adds a QDPAK Package to Its 650 V CoolMOS CFD7A Family

    3 Min Read

    The accelerated transition to electric vehicles has led to significant innovations in charging systems that demand more cost-efficient and high performing power electronics. Addressing this, Infineon Technologies AG expands its 650 V CoolMOS™ CFD7A portfolio by introducing the QDPAK package.

    This package family is designed to provide equivalent thermal capabilities with improved electrical performance over the well-known TO247 THD devices, thus enabling efficient energy utilization in onboard chargers and DC-DC converters.

    Efficient and powerful electric vehicle charging systems help reduce charging times and vehicle weight, increasing design flexibility and reduce the total cost of ownership of the vehicle. This new addition complements the existing CoolMOS CFD7A series, offering versatility with top-side and bottom-side cooled packages. The QDPAK TSC (top side cooled), enables designers to achieve higher power densities and optimal PCB space utilization.

    The 650 V CoolMOS CFD7A offers several important features for reliable operation in high-voltage applications. Thanks to its reduced parasitic source inductance, the device can minimize electromagnetic interference (EMI), ensuring clear signals and consistent performance.

    The Kelvin source pin also provides improved precision for current sensing, ensuring accurate measurements even in challenging conditions. With a creepage distance suitable for high voltage applications, as well as high current capability and high power dissipation (P tot) of up to 694 W at 25°C, it is a versatile and powerful device for a wide range of high-voltage applications.

    New system designs using 650 V CoolMOS CFD7A in QDPAK TSC will maximize PCB space use, doubling power density and enhancing thermal management via substrate thermal decoupling. This approach simplifies assembly, eliminates board stacking and reduces the need for connectors, thereby lowering system costs. The power switch reduces thermal resistance by up to 35 percent, providing high power dissipation that outperforms standard cooling solutions.

    This feature overcomes the thermal limitations of bottom side cooled SMD designs using FR4 PCBs, resulting in a significant boost in system performance. The optimized power loop design locates drivers near the power switch, improving reliability by reducing stray inductance and chip temperatures. Overall, these features contribute to a cost-effective, robust, and efficient system ideal for modern power needs.

    As announced in February 2023, the QDPAK TSC package has been registered as a JEDEC standard for high-power applications, helping to establish a broad adoption of TSC in new designs with one standard package design and footprint. To further to accelerate this transition, Infineon will also release additional Automotive Qualified devices in QDPAK TSC for onboard chargers and DC-DC converters in 2024, such as 750 V and 1200 V CoolSiC™ devices.

    Original – Infineon Technologies

    Comments Off on Infineon Adds a QDPAK Package to Its 650 V CoolMOS CFD7A Family
  • onsemi Opened a Test Lab in Slovakia to Advance System Solutions for xEVs and EI

    onsemi Opened a Test Lab in Slovakia to Advance System Solutions for xEVs and EI

    2 Min Read

    onsemi opened an application test lab in Piestany, Slovakia, focused on the advancement of system solutions for battery/plug-in hybrid/electric vehicles (xEVs) and energy infrastructure (EI) power conversion systems. The state-of-the-art systems applications lab provides specialized equipment to develop and test next-generation silicon (Si) and silicon carbide (SiC) semiconductor solutions in collaboration with automotive OEMs, Tier 1s and EI providers.

    Modern semiconductor devices are essential for highly efficient power conversion in xEV powertrains and charging, as well as applications in renewable energy. The new lab will play a central role in ensuring that the development of future power products results in highly differentiated, value-add solutions tailored to customers’ specific requirements.

    The new facility consists of two high-voltage power labs that focus on systems and device level development as well as evaluation of SiC/Si traction inverters and ACDC/DCDC power converters. Laser welding facilities, mechanical clean rooms and workshops further enable fast prototyping and testing of next-generation system solutions.

    Evaluation capabilities for the next-generation system solutions include:

    • Continuous 24/7 testing
    • Internally developed and patented software and hardware solutions to support high-voltage power cycling via space vector modulation (SVM) and sinusoidal pulse width modulation (SPWM)
    • High-accuracy logging devices for assessing SiC and Si health and reliability
    • Simulation of the harsh conditions faced by inverters during operation, testing liquid-cooled devices at temperatures as low as minus 50 degrees C and up to 220 degrees C
    • Wider range of industry-recognized software allows for the programing of FPGAs and ARM microcontrollers on site, as well as qualification testing, data analysis and 3D modeling

    Original – onsemi

    Comments Off on onsemi Opened a Test Lab in Slovakia to Advance System Solutions for xEVs and EI
  • MCC Adds New 60V N-Channel Power MOSFETs to its Robust Auto Portfolio

    MCC Adds New 60V N-Channel Power MOSFETs to its Robust Auto Portfolio

    1 Min Read

    MCC Semi expanded its growing auto-grade portfolio with three new 60V N-channel MOSFETs: MCU75N06YHE3-TP, MCG60N06YHE3-TP, and MCAC65N06YHE3-TP.

    Leveraging split-gate trench (SGT) MOSFET technology, MCC’s new products deliver optimal performance, efficiency, and thermal management, making them the intelligent choice for a range of demanding auto applications.

    With on-resistance as low as 4.8mΩ, these AEC-Q101 qualified MOSFETs guarantee optimal power flow while significantly reducing power losses.

    DFN333, DFN5060, and DPAK package options enable design flexibility and compatibility with various automotive systems.

    Original – Micro Commercial Components

    Comments Off on MCC Adds New 60V N-Channel Power MOSFETs to its Robust Auto Portfolio
  • Toshiba Launched New Automotive Grade 40V N-channel Power MOSFETs

    Toshiba Launched New Automotive Grade 40V N-channel Power MOSFETs

    2 Min Read

    Toshiba Electronics Europe GmbH has launched a pair of automotive grade 40V N-channel power MOSFETs based upon their latest U-MOS IX-H process. The new devices use a new S-TOGLTM (Small Transistor Outline Gull-wing Leads) package that offers a number of advantages in automotive applications.

    Automotive safety-critical applications such as steering, braking and autonomous driving systems generally require more devices than other systems to meet redundancy requirements. Here, a power MOSFET with high current density is required due to the size constraints within automotive equipment.

    The new XPJR6604PB and XPJ1R004PB have a VDSS rating of 40V and the XPJR6604PB is rated for a continuous drain current (ID) of 200A (XPJ1R004PB = 160A). Both devices are rated for pulsed current (IDP) at 3x this value, 600A and 480A respectively. The 200A rating is higher than that achieved by Toshiba’s 6.5mm × 9.5mm DPAK+ package.

    The new XPJR6604PB and XPJ1R004PB automotive MOSFETs use Toshiba’s innovative new S-TOGLTM package that measures just 7.0mm × 8.44mm × 2.3mm. The products are post-less and feature a multi-pin structure for the source leads that significantly decreases package resistance.

    Combining the S-TOGLTM package with Toshiba’s U-MOS IX-H process gives the XPJR6604PB an on-resistance (RDS(ON) Compared to this device, the mounting area has reduced by around 55% compared while retaining the channel-to-case thermal resistance characteristics (Zth(ch-c)) – XPJR6604PB = 0.4ºC/W and XPJ1R004PB = 0.67ºC/W.

    Many automotive applications are based in severely harsh environments, so the reliability of surface mount solder joints is a critical consideration. Toshiba’s S-TOGLTM package uses gull-wing leads that reduce mounting stress, improving the reliability of the solder joint.

    Suited to harsh temperature environments, the MOSFETs are AEC-Q101 qualified and capable of operating at channel temperatures (Tch) as high as 175ºC.

    Toshiba offers matched shipments for the devices, in which the gate threshold voltage range does not exceed 0.4V for each reel. This facilitates designs with small characteristic variations for applications requiring parallel connectivity for high-current operation.

    Original – Toshiba

    Comments Off on Toshiba Launched New Automotive Grade 40V N-channel Power MOSFETs