SiC Tag Archive

  • Toshiba Introduced Industry’s First 2200V Dual Silicon Carbide MOSFET Module

    Toshiba Introduced Industry’s First 2200V Dual Silicon Carbide MOSFET Module

    2 Min Read

    Toshiba Electronic Devices & Storage Corporation developed “MG250YD2YMS3,” the industry’s first 2200V dual silicon carbide (SiC) MOSFET module for industrial equipment. The new module has a drain current (DC) rating of 250A and uses the company’s third generation SiC MOSFET chips. It is suitable for applications that use DC1500V, such as photovoltaic power systems and energy storage systems. Volume shipments start today.

    Industrial applications like those mentioned above generally use DC1000V or lower power, and their power devices are mostly 1200V or 1700V products. However, anticipating widespread use of DC1500V in coming years, Toshiba has released the industry’s first 2200V product.

    MG250YD2YMS3 offers low conduction loss with a low drain-source on-voltage (sense) of 0.7V (typ.). It also offers lower turn-on and turn-off switching loss of 14mJ (typ.) and 11mJ (typ.) respectively, an approximately 90% reduction against a typical silicon (Si) IGBT. These characteristics contribute to higher equipment efficiency. Realizing low switching loss also allows the conventional three-level circuit to be replaced with a two-level circuit with a lower module count, contributing to equipment miniaturization.

    Toshiba will continue to meet the market needs for high efficiency and the downsizing of industrial equipment.

    Applications

    Industrial Equipment

    • Renewable energy power generation systems (photovoltaic power systems, etc.)
    • Energy storage systems
    • Motor control equipment for industrial equipment
    • High frequency DC-DC converter, etc.

    Features

    • Low drain-source on-voltage (sense):
      VDS(on)sense=0.7V (typ.) (ID=250A, VGS=+20V, Tch=25°C)
    • Low turn-on switching loss:
      Eon=14mJ (typ.) (VDD=1100V, ID=250A, Tch=150°C)
    • Low turn-off switching loss:
      Eoff=11mJ (typ.) (VDD=1100V, ID=250A, Tch=150°C)
    • Low stray inductance:
      LsPN=12nH (typ.)

    Original – Toshiba

    Comments Off on Toshiba Introduced Industry’s First 2200V Dual Silicon Carbide MOSFET Module
  • Navitas To Reveal New Power Platform at SEMICON Taiwan

    Navitas To Reveal New Power Platform at SEMICON Taiwan

    2 Min Read

    Navitas Semiconductor will reveal a new, high-performance wide bandgap power platform as part of its display at one of Asia’s most prestigious electronics exhibitions – sponsored by Navitas – SEMICON Taiwan 2023, from September 6th-8th.

    Visitors will discover the latest gallium nitride (GaN) GaNFast™ power ICs integrate gallium nitride (GaN) power and drive, with control, sensing, and protection to enable faster charging, higher power density, and greater energy savings. Complementary GeneSiC™ power devices are optimized high-power, high-voltage, and high-reliability silicon carbide (SiC) solutions.

    Additionally, Navitas will showcase cutting-edge, power-system platforms to dramatically accelerate customer developments, minimize time-to-market, and set new industry benchmarks in energy efficiency, power density and system cost. These system platforms include complete design collateral with fully-tested hardware, embedded software, schematics, bill-of-materials, layout, simulation and hardware test results.  Examples include:

    1. Navitas’ CRPS185 data center power platform, that delivers a full 3,200 W of power in only 1U (40 mm) x 73.5mm x 185 mm (544 cc), achieving 5.9 W/cc, or almost 100 W/in3 power density. This is a 40% size reduction vs, the equivalent legacy silicon approach and reaches over 96.5% efficiency at 30% load, and over 96% stretching from 20% to 60% load, creating a ‘Titanium Plus’ benchmark.
    2. Navitas’ 6.6 kW 3-in-1 bi-directional EV on-board charger (OBC) with 3 kW DC-DC. This 96%+ efficient unit has over 50% higher power density, and with efficiency over 95%, delivers up to 16% energy savings as compared to competing solutions.

    As part of SEMICON’s Power and Opto Semiconductor Forum, Navitas’ Charles Bailley, Senior Director of Business Development, will present “GaN Power ICs Increase Power Density in EV Power Systems”. The presentation is at 2pm, on September 6th, in room 402, 4F, TaiNEX 1.

    “Breakthrough high efficiency, high reliability, and high power density – all from the new GaN power IC platform,” said Kevin 汪時民 Wang, Manager of Navitas Taiwan. “The new platform announcement matches SEMICON’s theme of ‘Innovating the World through Semiconductors’ and our own mission to ‘Electrify Our World™’.”

    Original – Navitas Semiconductor

    Comments Off on Navitas To Reveal New Power Platform at SEMICON Taiwan
  • MACOM to Acquire RF Business of Wolfspeed

    MACOM to Acquire RF Business of Wolfspeed

    2 Min Read

    MACOM Technology Solutions Holdings, Inc. announced that it has entered into a definitive agreement to acquire the radio frequency business of Wolfspeed, Inc. The RF Business includes a portfolio of Gallium Nitride (“GaN”) on Silicon Carbide (“SiC”) products used in high performance RF and microwave applications. 

    The business services a broad customer base of leading aerospace, defense, industrial and telecommunications customers and most recently generated annualized revenues of approximately $150 million. The acquisition is expected to be immediately accretive to MACOM’s non-GAAP earnings.   

    “We are excited to acquire Wolfspeed’s RF Business and look forward to welcoming its employees to MACOM,” stated Stephen G. Daly, President and Chief Executive Officer, MACOM. “The RF team’s engineering capabilities, technology and products are a perfect fit with MACOM and our strategy.”

    The acquisition includes a 100mm GaN wafer fabrication facility in Research Triangle Park, North Carolina (the “RTP Fab”) with operations conveying to MACOM approximately two years following the closing and Wolfspeed’s relocation of certain production equipment. 

    The acquisition also includes design teams and associated product development assets in Arizona, California and North Carolina, as well as back-end production capabilities in California and Malaysia. In addition, MACOM will be assigned or licensed a robust intellectual property portfolio including over 1,400 patents associated with the RF Business.

    The RF Business will be acquired for $125 million, including $75 million cash paid at closing and $50 million of MACOM common stock issued with certain restrictions. A workforce of approximately 280 employees is expected to join MACOM at closing, with additional employees joining when the RTP Fab conveys.

    Closing of the transaction is subject to the expiration of a waiting period under the Hart-Scott-Rodino Antitrust Improvements Act of 1976 and other closing conditions and is expected to occur in the second half of calendar year 2023.

    Original – MACOM Technology Solutions

    Comments Off on MACOM to Acquire RF Business of Wolfspeed
  • University of Arkansas Breaks Ground on MUSiC Semiconductor Facility

    University of Arkansas Breaks Ground on MUSiC Semiconductor Facility

    5 Min Read

    The University of Arkansas celebrated an important milestone with the groundbreaking on a building that Chancellor Charles Robinson suggested might someday rival the U of A’s most iconic structure, Old Main, in significance to the university and the state of Arkansas.

    Robinson and other university leaders, including University of Arkansas System President Don Bobbitt and members of the U of A System Board of Trustees, as well as researchers and industry leaders, gathered at the Arkansas Research and Technology Park in South Fayetteville to celebrate construction of the national Multi-User Silicon Carbide Research and Fabrication Facility, or MUSiC

    The new semiconductor research and fabrication facility will produce microelectronic chips made with silicon carbide, a powerful semiconductor that outperforms basic silicon in several critical ways. The facility will enable the federal government – via national laboratories – businesses of all sizes, and other universities to prototype with silicon carbide, a capability that does not presently exist elsewhere in the U.S.

    Work at the facility will bridge the gap between traditional university research and the needs of private industry and will accelerate technological advancement by providing a single location where chips can go from developmental research to prototyping, testing and fabrication.

    “This fills a gap for our nation, allowing companies, national laboratories and universities around the nation to develop the low-volume prototypes that go from their labs to fab, ultimately scaling up to the high-volume manufacturing…” said Alan Mantooth, Distinguished Professor of electrical engineering and principal investigator for the MUSiC facility. “We fill that gap. And there’s no other place like it in the world. This is the only place that will be able to do that with silicon carbide.”

    The 18,660 square-foot facility, located next to the National Center for Reliable Electrical Power Transmission at the research and technology park, will address obstacles to U.S. competitiveness in the development of silicon-carbide electronics used in a wide range of electronic devices, circuits and other consumer applications. The building will feature approximately 8,000 square feet of clean rooms for fabrication and testing.

    Education and training within the facility will also accelerate workforce development, helping supply the next generation of engineers and technicians in semiconductor manufacturing, which Mantooth and other leaders have said is critical for bringing semiconductor manufacturing back to the U.S., after it was offshored in the late 1990s and early 2000s. 

    “This is truly a special day in the life of the University of Arkansas,” said Robinson. “This building, it really doesn’t need to be hyped. It is a very important building, and you just know it, important for our university, important for our state, important for our nation.” 

    Robinson invoked another groundbreaking, that of Old Main, the university’s oldest and best known structure, which the university celebrated Aug. 17, 1873, almost exactly 150 years ago. 

    “I took that 150th anniversary of the groundbreaking as a good sign that we are moving in a timely way,” Robinson said, “doing important work in establishing this building.”

    Friday’s groundbreaking occurred a day after the university and the Arkansas Department of Commerce hosted the CHIPS AMERICA Summit, an event in which research, industry and governmental leaders discussed semiconductor-related opportunities resulting from the CHIPS (Creating Helpful Incentives to Produce Semiconductors) and Science Act passed by Congress in 2022. The event featured Adrienne Elrod, director of external and government affairs for the U.S. Department of Commerce’s CHIPS Program Office, U.S. Rep. Steve Womack and Arkansas Secretary of Commerce Hugh McDonald.

    During the summit, Elrod stated that prior to the coronavirus pandemic, 90% of the world’s leading-edge chips were manufactured at one facility in Taiwan. The federal government prioritized the onshoring of this critical technology as a result of manufacturing and production shortages of essential computer chips during the pandemic.

    “If America is going to compete and lead the world over the next century, we must invest in our technology and manufacturing,” Elrod said. “We want to make sure, at the very least, that we have two new large-scale clusters of leading- edge fabs created (in the United States).”

    As Mantooth mentioned, the University of Arkansas can contribute to this effort on a fundamental level and is uniquely positioned to take advantage of opportunities offered by the CHIPS and Science Act, which is providing approximately $280 billion in funding to stimulate domestic research and manufacturing of semiconductors.

    “The university is leaning forward and has now secured funding for projects important to microelectronics research and development,” Womack said during Thursday’s summit. “The university has positioned itself, as I say often, to be the preeminent university research location for microelectronics. … I am grateful for the bright minds at the University of Arkansas with a proven track record of success who will make this happen.”

    Original – University of Arkansas

    Comments Off on University of Arkansas Breaks Ground on MUSiC Semiconductor Facility
  • Choosing a Supplier of SiC Power Devices for Vehicle Electrification

    Choosing a Supplier of SiC Power Devices for Vehicle Electrification

    3 Min Read

    The rapid growth of technology over the past century brought us as many advantages as many disadvantages including the accelerating global warming with its dramatic consequences we face every day in various parts of the Earth. So far no one found a solution how to stop this process, but there are many solutions how to slow it down. 

    Today we try to respond to this challenge with carbon neutrality initiatives launched in many countries across the globe. And one of the major steps in this green society program is the electrification of passenger and commercial vehicles.

    Right now, companies have various approaches to vehicle electrification including mild-hybrid electric vehicles MHEV, full hybrid electric vehicles HEV, plug-in hybrid electric vehicles PHEV, battery electric vehicles BEV, and fuel-cell electric vehicle FCEV. What some time ago seemed like a big step forward is a reality we live in now.

    And to make this dream come true became possible with the help of power semiconductors. For a long time, semiconductors were used in the automotive industry, and the evolution of power semiconductor materials pushed the transition to the electrification of vehicles. Electric vehicles’ performance and cost depend on the technical level of the motor control system. 

    Previously, silicon (Si) IGBT modules served as the heart of electronic control systems with their relatively high switching speed and low conduction loss. But with the growth of silicon carbide (SiC) technology, EVs step into the new era of electrification.

    Silicon-based semiconductors have been dominating the market for many decades. No wonder, several generations of power electronics engineers were passing their knowledge and experience working with silicon semiconductors. Through time they have short-listed their preferred solutions produced by several companies.

    Based on the current requirements for the improvement of battery life and dynamic performance of electric passenger and commercial vehicles, higher efficiency, and fewer parts and materials are required to further improve the power density of inverters and electric drive assemblies. All this becomes possible with the transition from Si to SiC power devices. But when it comes to the all-new silicon carbide semiconductors and the rapidly growing EV industry, many face difficulties to make the right choice of the silicon carbide devices available in the market.

    Recently I launched a poll to understand what is most important for EV companies when choosing a supplier of SiC power devices. Power electronics engineers from the semiconductor and automotive industries shared their experience and unanimously confirmed that the performance of the power devices plays a crucial role when choosing a supplier. The poll results are:

    • Performance/characteristics – 66%
    • Price – 16%
    • Lead time – 9%
    • Brand – 9%

    Based on the results it is clear that for the EV market today characteristics of SiC power devices and price play the most important role. After all, consumers want high performance and reliability at affordable prices. 

    Nowadays SiC is still more expensive than Si. However, the prices have dropped a lot in the past decade, and the growing number of SiC fabs promises to drop the price in the future. Fingers crossed, in the nearest future, the dream of the consumers for the high-performance, reliable, and affordable EV will come true.

    Comments Off on Choosing a Supplier of SiC Power Devices for Vehicle Electrification
  • Toshiba Developed 2200 V SiC MOSFETs

    Toshiba Developed 2200 V SiC MOSFETs

    2 Min Read

    Toshiba Electronic Devices & Storage Corporation has developed 2200 V silicon carbide (SiC) metal oxide semiconductor field effect transistors (MOSFETs) for photovoltaic (PV) inverters. A two-level inverter with the new devices realized higher frequency operation and lower power loss than a conventional three-level silicon (Si) insulated gate bipolar transistor (IGBT) inverter. The new MOSFETs also contribute to simplification of inverter systems and reductions in their size and weight.

    Three-level inverters enjoy the advantage of low switching losses because the voltage applied to switching devices in the inverters during off-state is half the line voltage. Against this, two-level inverters have fewer switching modules than three-level inverters, realizing a simpler, smaller, and lighter system. However, they require semiconductors with higher breakdown voltage, as the applied voltage is equal to the line voltage. Also, demand for semiconductors with both low loss and high breakdown voltage is growing as 1500 V DC line voltage systems are introduced in photovoltaic and other renewable energy markets.

    Toshiba Electronic Devices & Storage Corporation has developed 2200 V Schottky barrier diode (SBD)-embedded SiC MOSFETs for two-level inverters in 1500 V DC voltage systems. The impurity concentration and thickness of the drift layer has been optimized to maintain the same relationship between the on-resistance and the breakdown voltage as our existing products, and also to achieve high resistance to cosmic rays, a requirement for PV systems. It has also been confirmed that embedding SBDs clamped parasitic PN junctions between the p-base regions and the n-drift layer secure high reliability in reverse conduction.

    Switching energy loss for the developed all-SiC module is far lower than for the Si module (Si IGBTs + Si fast recovery diodes) with the same 2000 V rated voltage class. Estimates of inverter power dissipation found that the developed SiC module achieves higher frequency operation twice that of a conventional Si IGBT, as well as a 37% lower loss for the two-level SiC inverter against the three-level Si inverter. The higher frequency operation enables downsizing and weight reduction of other system components, such as heat sinks and filters.

    Original – Toshiba

    Comments Off on Toshiba Developed 2200 V SiC MOSFETs
  • University of Arkansas Began Construction of the national Multi-User Silicon Carbide Research and Fabrication Facility

    University of Arkansas Began Construction of the National Multi-User Silicon Carbide Research and Fabrication Facility

    4 Min Read

    The University of Arkansas has taken the next step to becoming a national leader in the United States’ semiconductor economy. Semiconductors, such as silicon, are essential materials in most electronic devices and advance performance in fields such as healthcare, national defense, computing and transportation.

    This August, the university began construction on the national Multi-User Silicon Carbide Research and Fabrication Facility, or MUSiC. Capable of silicon or silicon carbide chip fabrication, this new semiconductor research and fabrication facility will enable the government, businesses of all sizes, and universities to prototype in silicon carbide, introducing a capability that does not presently exist in the U.S.

    This unique facility will offer low-volume prototyping for high-volume manufacturing, bridging the gap between traditional university research and the needs of private industry. This will accelerate both workforce development and technological advancement in semiconductors by providing a single location where chips can be go from developmental research to prototyping, testing and fabrication. 

    Alan Mantooth, Distinguished Professor of electrical engineering at the U of A, is principal investigator for MUSiC. He stated that with MUSiC, the university could “begin training the next generation at a variety of degree levels to provide well-trained and educated talent for onshoring semiconductor manufacturing that domestic suppliers offshored in the late 90s and early 2000s. Our training will be equally applicable to silicon and silicon carbide and other materials.”

    Construction coincides with the CHIPS America Summit on Aug. 17, an invitation-only event for research, industry and governmental leaders from across the nation to discuss CHIPS and Science Act semiconductor-related opportunities and the ways in which the U of A and the State of Arkansas are uniquely positioned to lead.

    The summit will feature Director of External and Government Affairs for the U.S Department of Commerce’s CHIPS Program Office, Adrienne Elrod. U.S. Representative Steve Womack and Arkansas Secretary of Commerce Hugh McDonald will also participate.

    In addition to the MUSiC facility, the U of A is also home to the first Energy Frontier Research Center in Arkansas, as part of a team of researchers who received $10.35 million from the U.S. Department of Energy. The Center for Manipulation of Atomic Ordering for Manufacturing Semiconductors is dedicated to investigating the formation of atomic orders in semiconductor alloys and their effects on various physical properties. This research program will enable reliable, cost-effective and transformative manufacturing of semiconductors. 

    Researchers at the U of A previously established the MonArk NSF Quantum Foundry to accelerate the development of quantum materials and devices. In collaboration with Montana State University, and other member universities, the foundry supports the study of 2-D materials — consisting of a single layer of bonded atoms — by aiding researchers and facilitating the exchange of ideas across academia and industry. The project leads the fabrication of 2-D material quantum devices and their characterization, using low-temperature electronic transport and optoelectronic techniques.

    The U of A’s existing and expanding research foundation means it’s uniquely positioned to take advantage of the recent CHIPS (Creating Helpful Incentives to Produce Semiconductors) and Science Act, which is providing approximately $280 billion in funding to stimulate domestic research and manufacturing of semiconductors.

    As a result of manufacturing and production shortages of essential computer chips during the pandemic, which are overwhelmingly manufactured overseas, the federal government has prioritized the onshoring of this critical technology.

    About the University of Arkansas: As Arkansas’ flagship institution, the U of A provides an internationally competitive education in more than 200 academic programs. Founded in 1871, the U of A contributes more than $2.2 billion to Arkansas’ economy through the teaching of new knowledge and skills, entrepreneurship and job development, discovery through research and creative activity while also providing training for professional disciplines.

    The Carnegie Foundation classifies the U of A among the few U.S. colleges and universities with the highest level of research activity. U.S. News & World Report ranks the U of A among the top public universities in the nation. See how the U of A works to build a better world at Arkansas Research and Economic Development News.

    The national Multi-User Silicon Carbide Research and Fabrication Facility, or MUSiC, will provide opportunities for the government and business of all sizes, and universities to prototype in silicon carbide, introducting a capability that does not currently exist in the U.S.

    Original – University of Arkansas

    Comments Off on University of Arkansas Began Construction of the National Multi-User Silicon Carbide Research and Fabrication Facility
  • Infineon to Build World’s Largest 200-millimeter SiC Power Fab in Malaysia

    Infineon to Build World’s Largest 200-millimeter SiC Power Fab in Malaysia

    4 Min Read

    The decarbonization trend will result in strong market growth for power semiconductors, in particular those based on wide bandgap materials. As a leader in Power Systems, Infineon Technologies AG is now taking a further, decisive step to shape this market: By significantly expanding its Kulim fab – over and above the original investment announced in February 2022 – Infineon will build the world’s largest 200-millimeter SiC (silicon carbide) Power Fab. The planned expansion is backed by customer commitments covering about five billion euros of new design-wins in automotive and industrial applications as well as about one billion euros in pre-payments.

    Over the next five years Infineon will additionally invest up to five billion euros in Kulim during a second construction phase for Module Three. The investment will lead to an annual SiC revenue potential of about seven billion euros by the end of the decade, together with the planned 200-millimeter SiC conversion of Villach and Kulim. This highly competitive manufacturing base will support Infineon’s SiC market share target of 30% towards the end of the decade. Infineon is confident that the company’s SiC revenue in the fiscal year 2025 will come in ahead of the target of one billion euros.

    “The market for silicon carbide shows accelerating growth, not only in automotive but also in a broad range of industrial applications such as solar, energy storage and high-power EV charging. With the Kulim expansion, we will secure our leadership position in this market,” said Jochen Hanebeck, CEO of Infineon. “With the industry’s leading scale and a unique cost position, we are leveraging our competitive position of best-in-class SiC trench technology, the broadest package portfolio and unrivaled application understanding. These factors are the areas of differentiation and success in the industry.”

    Infineon has been awarded new design wins of about five billion euros along with about one billion euros in prepayments from existing and new customers: In the automotive sector this includes six OEMs, three of them from China. Among the customers are Ford, SAIC and Chery. In the area of renewable energies customers include SolarEdge and three leading Chinese photovoltaic and energy storage systems companies.

    In addition, Infineon and Schneider Electric agreed on a capacity reservation including prepayments for power products based on silicon and silicon carbide. Infineon and the respective customers will provide more details in separate announcements in the near future. The prepayments will contribute positively to Infineon’s cash flow in the coming years and shall be fully repaid in connection with the agreed sales volumes by 2030 at the latest.

    The Right Honourable Dato’ Seri Anwar bin Ibrahim, Prime Minister of Malaysia, expressed his appreciation for Infineon’s commitment to creating a significant wide bandgap hub in the country. “Malaysia is putting in maximum efforts to meet its national target to decarbonize its economy and achieve net zero by 2050. Malaysia’s continued appeal as a preferred investment destination comes with a well-established landscape for developing innovative and sustainable technologies. In this vein, Infineon’s vision on green technology and sustainability puts it right at home in Malaysia.

    Infineon and other well-established German corporations’ continued faith in Malaysia is a vote of confidence in Malaysia’s new economic growth agenda premised on inclusivity and sustainability, enabled by strong policies on knowledge transfer, quality investments, business enablement and socio-economic well-being based on equitable sharing of the nation’s wealth.”

    The Minister of Investment, Trade and Industry (MITI), His Hon. Tengku Datuk Seri Utama Zafrul Aziz lauded Infineon’s expansion and said, “Infineon’s expansion of their world-class silicon carbide facility in Kulim marks a significant milestone in Malaysia’s pursuit of developing advanced manufacturing capabilities, creating high-skilled employment opportunities and positioning the country at the forefront of enabling green technologies, which are crucial to achieving our global sustainable development goals.

    The innovative power semiconductor technologies manufactured in the SiC Power Fab will also bolster Malaysia’s position as a key player in the world’s semiconductor ecosystem, with a growing role specifically in the sustainable technology supply chain. I am heartened by Infineon’s sharing of Malaysia’s commitment to address the impact of climate change and I look forward to our long-term partnership for the further development of Malaysia’s green technologies ecosystem.”

    Sustainability is a key element in the planning, construction and operation of the fab. The building is designed in a way that allows Infineon to make responsible use of resources such as electricity and water.

    Original – Infineon Technologies

    Comments Off on Infineon to Build World’s Largest 200-millimeter SiC Power Fab in Malaysia
  • Leapers Semiconductor to Expand its SiC Power Modules Portfolio for ESS and Solar Markets

    Leapers Semiconductor to Expand its SiC Power Modules Portfolio for ESS and Solar Markets

    2 Min Read

    SiC power devices are changing and reshaping many industries today, providing numerous benefits over fundamental silicon-based semiconductors. One of the key advantages is a dramatically reduced power losses with increased efficiency achieved through silicon carbide exceptional material properties. SiC power semiconductors can operate at higher frequencies and temperatures delivering higher power densities and reduced cooling requirements. One of the industries benefiting much from the use of SiC power devices is the energy storage.

    Adopting silicon carbide technology, energy storage systems can deliver great energy saving and much better overall system performance.

    Reliability is one of the major requirements for any power electronics system, and ESS is no exception. That is why many ESS companies today choose SiC technology over Si. Silicon carbide power devices provide increased robustness and resistance when it comes to operating in extreme conditions. SiC temperature robustness allows to eliminate the risk of the system overheating – one of the major reasons for failure.

    Leading the development process of SiC power devices for a variety of emerging applications including vehicle electrification, photovoltaics, and, of course, battery energy storage systems, Leapers Semiconductor is expanding its portfolio of the hybrid modules with the 3-level power module to provide increased reliability for the ESS, solar, and the other 3-level applications.

    The all new DFH10AL12EZC1 power module integrates 1200V SiC MOSFET chips and 1200V IGBT chips in E2 package designed to correspond to high requirements set by the above-mentioned applications.

    Leapers Semiconductor DFH10AL12EZC1 hybrid power module features:

    • Blocking voltage:1200V
    • Rds(on): 9.5mΩ (VGS =15V)/8.3mΩ (VGS =18V)
    • Low Switching Losses
    • High current density
    • Press FIT Contact Technology
    • 175°C maximum junction temperature
    • Thermistor inside

    DFH10AL12EZC1 hybrid power modules guarantee the enhanced efficiency, improved power conversion, and increased overall reliability and durability with reduced system size.

    The other applications that will benefit from DFH10AL12EZC1 include:

    • Solar inverter Systems
    • Three-level Systems
    • Energy Storage Systems
    • High Frequency Switching Systems

    Original – Leapers Semiconductor

    Comments Off on Leapers Semiconductor to Expand its SiC Power Modules Portfolio for ESS and Solar Markets
  • WeEn Semiconductor's First Global Module Plant Commences Operations in Shanghai

    WeEn Semiconductor’s First Global Module Plant Commences Operations in Shanghai

    4 Min Read

    The opening ceremony of WeEnwin Jinshan Module Plant was held in the Shanghai Jinshan High-tech Industrial Development Zone. The ceremony marked the official commencement of WeEn’s world-first module plant, intended to produce various types of power module products utilized in consumer electronics, communications, new energy, and automotive applications. The products connect customers and the ecosystems, actively fostering the high-quality development of the industry.

    Markus Mosen, WeEn Semiconductors Co., Ltd. CEO; Chen Song, COO; Tang Ziming, CFO; Wu Rui, CHRO; Peng Xijun, general manager of Shanghai New Jinshan Industrial Investment & Development Co., Ltd; Zhao Fei, deputy director of the Jinshan District Development and Reform Commission; Cao Qin, deputy director of the Jinshan District Investment Promotion Office; other relevant department heads of the New Jinshan Development Company; WeEn boards Zhang Xinyu, Chang Liang, and Zhu Fenglin; together with representatives from WeEn’s global partners, numerous customers, vendors, approximately 200 guests attended the event to personally witness this historic step in WeEn’s new journey.

    Located in the Shanghai Bay Area High-tech Industrial and Development Zone, WeEn Jinshan Module Plant covers an area of 11,000 square meters. The construction of the plant began in August 2022. Eight months later in April 2023, the building quality and fire inspection compliance tests were successfully completed.

    WeEn Semiconductors Co., Ltd. has invested approximately RMB 200 million in the wholly-owned new Jinshan Module Plant, which has introduced over a hundred of the industry’s most advanced power module production and testing equipment to meet the market’s mainstream demand for various types of module products.

    It is worth underscoring that the newly established WeEnwin Module Plant has simultaneously set up an advanced packaging R&D center to develop and mass produce cutting-edge packaging technologies while researching the applicability of new materials.

    To optimize efficiency and reliability, the fully automated module production line is equipped with top-notch processing capabilities, including lead-free chip bonding/silver sintering bonding, lead-free soldering/ultrasonic soldering of terminals, aluminum wire bonding, and copper tab connections. Currently, WeEnwin module plant. has obtained ISO9001 and IATF16949 certifications and undergone VDA6.3 process audits, evidence of the company’s robust system that guarantees top-quality products.

    Peng Xijun, general manager of Shanghai New Jinshan Industrial Investment & Development Co., Ltd, warmly congratulated WeEnwin for the opening, noting that the event was a testimony of the concerted efforts of all parties. He further stated that the collective endeavors have significant importance in elevating the power semiconductor industry’s development level and accelerating the concentration of the optoelectronic chip industry in the high-tech industrial and development zone.

    In addition, he expressed his wish for the high-tech zone, as it embarks on its new era journey, to continue harnessing resources and efforts and attracting policies aimed at strengthening the innovation chain, extending the industrial chain, and improving the ecosystem.

    Meanwhile, Markus Mosen, WeEn Semiconductors Co., Ltd. CEO stated, “Given the favorable winds, this is the perfect time to set sail.” WeEn’s investment in the world’s first module factory has successfully transitioned from planning to operation according to schedule. Therefore, we remain grateful for the strong support from the Jinshan District People’s Government, Shanghai Bay Area High-tech Industrial Development Zone, and FITA Tech.

    There is no doubt that without the collective efforts of our partners and team, this accomplishment would not have been possible. At WeEnwin, we will seize the opportunities of the era, leverage our product and technological strengths, and provide reliable and efficient power semiconductor devices to our customers and partners. As we inject new impetus into pragmatic cooperation, we remain confident in our ability to propel the ship of power device development toward a new journey.”

    The operation of the WeEnwin Jinshan Module plant will enhance the efficiency of WeEn Semiconductors Co., Ltd.’s entire industry chain layout and services. In addition to producing the most advanced SCR / FRD / IGBT / SIC modules, the factory will significantly improve the experience of customers and partners by offering innovative modules and packaging services for the automotive and renewable energy markets. It is projected that the first batch of products from the new Jinshan Module Factory for Chinese and overseas customers will be shipped in the fourth quarter of 2023.

    Original – WeEn Semiconductors

    Comments Off on WeEn Semiconductor’s First Global Module Plant Commences Operations in Shanghai