SiC Tag Archive

  • Nexperia to Invest USD 200 Million in WBG Production in Hamburg

    Nexperia to Invest USD 200 Million in WBG Production in Hamburg

    4 Min Read

    Semiconductor manufacturer Nexperia announced plans to invest USD 200 million (appx. 184 million Euros) to develop the next generation of wide bandgap semiconductors (WBG) such as silicon carbide (SiC) and gallium nitride (GaN), and to establish production infrastructure at the Hamburg site. At the same time, wafer fab capacity for silicon (Si) diodes and transistors will be increased. The investments are jointly announced with Hamburg’s Minister for Economic Affairs, Dr. Melanie Leonhard, on the occasion of the 100-year anniversary of the production site.

    To meet the growing long-term demand for efficient power semiconductors, all three technologies (SiC, GaN, and Si) will be developed and produced in Germany starting in June 2024. This means Nexperia is supporting key technologies in the fields of electrification and digitalization. SiC and GaN semiconductors enable power-hungry applications, such as data centers, to operate with exceptional efficiency and are core building blocks for renewable energy applications and electromobility. These WBG technologies have great potential and are increasingly important for achieving decarbonization goals.

    “This investment strengthens our position as a leading supplier of energy-efficient semiconductors and enables us to utilize available electrical energy more responsibly,” comments Achim Kempe, COO and managing director at Nexperia Germany. “In the future, our Hamburg fab will cover the complete range of WBG semiconductors while still being the largest factory for small signal diodes and transistors. We remain committed to our strategy of producing high-quality, cost-efficient semiconductors for standard applications and power-intensive applications, while addressing one of the greatest challenges of our generation: meeting the growing demand for energy and while reducing the environmental footprint.”

    First production lines for high-voltage GaN D-Mode transistors and SiC diodes started in June 2024. The next milestone will be modern and cost-efficient 200 mm production lines for SiC MOSFETs and GaN HEMTs. These will be established at the Hamburg factory over the next two years. At the same time, the investment will help to further automate the existing infrastructure at the Hamburg site and expand silicon production capacity by systematically converting to 200 mm wafers. Following the expansion of the clean room areas, new R&D laboratories are being built to continue to ensure a seamless transition from research to production in the future.

    In addition to advancing technology, the semiconductor supplier expects the initiative to stimulate local economic development. The investments make an important contribution to securing and creating jobs and enhancing the European Union’s semiconductor self-sufficiency. Nexperia works closely with universities and research institutes to benefit from each other’s expertise and promote highly qualified employee training. Nexperia relies on a robust research and development ecosystem in Hamburg and throughout Europe. Development partnerships and co-operations, e.g. in the field of GaN technology as part of the Industrial Affiliation Program (IIAP) of the nanoelectronics research center imec, play a crucial role. These and other collaborations ensure continuous innovation and technological excellence in Nexperia’s products.

    “The planned investment enables us to bring WBG chip design and production to Hamburg. However, SiC and GaN are by no means new territory for Nexperia. GaN FETs have been part of our portfolio since 2019, and in 2023 we expanded our range of products to include SiC diodes and SiC MOSFETs, the latter in collaboration with Mitsubishi Electric. Nexperia is one of the few suppliers to offer a comprehensive range of semiconductor technologies, including Si, SiC, and GaN in both e-mode and d-mode. This means, we offer our customers a one-stop shop for all their semiconductor needs”, explains Stefan Tilger, CFO and managing director at Nexperia Germany.

    The investment is yet another milestone in the 100-year history of Nexperia’s production site in Hamburg-Lokstedt. Since the foundation of Valvo Radioröhrenfabrik in 1924, the site has continuously developed and today supplies around a quarter of the global demand for small signal diodes and transistors. Since its spin-off from NXP in 2017, Nexperia has invested substantial sums in the Hamburg site, increased the workforce from 950 to around 1,600 and brought the technological infrastructure up to the state-of-the-art. This continued expenditure underlines the company’s commitment to remaining at the forefront of the industry and providing innovative solutions to its customers worldwide.

    Original – Nexperia

    Comments Off on Nexperia to Invest USD 200 Million in WBG Production in Hamburg
  • Vishay Intertechnology Expands SiC Schottky Diodes Portfolio

    Vishay Intertechnology Expands SiC Schottky Diodes Portfolio

    3 Min Read

    Vishay Intertechnology, Inc. introduced 16 new Gen 3 1200 V silicon carbide (SiC) Schottky diodes. Featuring a merged PIN Schottky (MPS) design, the Vishay Semiconductors devices combine high surge current robustness with low forward voltage drop, capacitive charge, and reverse leakage current to increase efficiency and reliability in switching power designs.

    The next-generation SiC diodes released today consist of 5 A to 40 A devices in the TO-220AC 2L, TO-247AD 2L, and TO-247AD 3L through-hole and D2PAK 2L (TO-263AB 2L) surface-mount packages. The diodes offer a low capacitance charge down to 28 nC, while their MPS structure — which features a backside thinned via laser annealing technology — delivers a reduced forward voltage drop of 1.35 V. In addition, the devices’ low typical reverse leakage current down to 2.5 µA at 25 °C reduces conduction losses, ensuring high system efficiency during light loads and idling. Unlike ultrafast diodes, the Gen 3 devices have virtually no recovery tail, which further improves efficiency.

    Typical applications for the diodes will include AC/DC PFC and DC/DC ultra high frequency output rectification in FBPS and LLC converters for solar power inverters; energy storage systems; industrial drives and tools; and datacenters. For the harsh environments of these applications, the devices combine operating temperatures to +175 °C with forward surge ratings to 260 A for high robustness. In addition, diodes in the D2PAK 2L package feature a molding compound with a high CTI ≥ 600, ensuring excellent electrical insultation at elevated voltages.

    Offering high reliability, the RoHS-compliant and halogen-free devices have passed higher temperature reverse bias (HTRB) testing of 2000 hours and temperature cycling testing of 2000 thermal cycles.

    Device Specification Table:

    Part #IF(AV) (A)IFSM (A)VF at IF (V)QC (nC)ConfigurationPackage
    VS-3C05ET12T-M35421.3528SingleTO-220AC 2L
    VS-3C10ET12T-M310841.3555SingleTO-220AC 2L
    VS-3C15ET12T-M3151101.3581SingleTO-220AC 2L
    VS-3C20ET12T-M3201801.35107SingleTO-220AC 2L
    VS-3C05ET12S2L-M35421.3528SingleD2PAK 2L
    VS-3C10ET12S2L-M310841.3555SingleD2PAK 2L
    VS-3C15ET12S2L-M3151101.3581SingleD2PAK 2L
    VS-3C20ET12S2L-M3201801.35107SingleD2PAK 2L
    VS-3C10EP12L-M310841.3555SingleTO-247AD 2L
    VS-3C15EP12L-M3151101.3581SingleTO-247AD 2L
    VS-3C20EP12L-M3201801.35107SingleTO-247AD 2L
    VS-3C30EP12L-M3302601.35182SingleTO-247AD 2L
    VS-3C10CP12L-M32 x 5421.3528Common cathodeTO-247AD 3L
    VS-3C20CP12L-M32 x 10841.3555Common cathodeTO-247AD 3L
    VS-3C30CP12L-M32 x 151101.3581Common cathodeTO-247AD 3L
    VS-3C40CP12L-M32 x 201801.35107Common cathodeTO-247AD 3L

    Samples and production quantities of the new SiC diodes are available now, with lead times of 13 weeks.

    Original – Vishay Intertechnology

    Comments Off on Vishay Intertechnology Expands SiC Schottky Diodes Portfolio
  • onsemi to Establish a Vertically Integrated SiC Manufacturing Facility in Czech Republic

    onsemi to Establish a Vertically Integrated SiC Manufacturing Facility in Czech Republic

    3 Min Read

    Electrification, renewables and artificial intelligence are global megatrends converging and driving unprecedented demands for advanced power semiconductors capable of optimizing energy conversion and management. In a strategic move toward addressing these demands, onsemi announced plans to establish a state-of-the-art, vertically integrated silicon carbide (SiC) manufacturing facility in the Czech Republic. The site would produce the company’s intelligent power semiconductors that are essential for improving the energy efficiency of applications in electric vehicles, renewable energy and AI data centers. 

    “Our brownfield investment would establish a Central European supply chain to better service our customers’ rapidly increasing demand for innovative technologies that improve the energy efficiency in their applications,” said Hassane El-Khoury, president and CEO, onsemi. “Through a close collaboration with the Czech government, the expansion would also enhance our production of intelligent power semiconductors that are essential to helping ensure the European Union is able to achieve its ambitions to significantly reduce carbon emissions and environmental impact.”  

    “onsemi’s decision to expand in Czechia is a clear confirmation of our country’s attractiveness for foreign investment and will bring significant momentum for the development of our economy,” said Mr. Jozef Síkela, Minister of Industry and Trade of the Czech Republic. “This investment not only strengthens our position in the semiconductor field but can also contribute to the development of the automotive industry and help us with its adaptation to the rise of electromobility.” 

    onsemi’s plan to expand SiC manufacturing with a multi-year brownfield investment of up to $2 billion (44 billion CZK) is part of the company’s previously disclosed long-term capital expenditure target. This investment would build on the company’s current operations in the Czech Republic, which include silicon crystal growth, silicon and silicon carbide wafer manufacturing (polished and EPI) and a silicon wafer fab. Today, the site can produce more than three million wafers annually, including more than one billion power devices. Upon completion, the operation would contribute annually more than $270 million USD (6 billion CZK) to the country’s GDP.   

    Pending all final regulatory and incentive approvals, including the investment incentive approval by the government of the Czech Republic and its notification to the European Commission, this would be one of the largest private sector investments in the Czech Republic’s history and would further contribute to the prosperity and economic dynamism of the Zlín region. onsemi is one of the first companies to invest in advanced semiconductor manufacturing in the Central European region.

    With this investment, the company would contribute to the strategic positioning of the region within the EU’s semiconductor value chain and demonstrate that all EU countries can benefit from the European Chips Act. The announcement also reflects onsemi’s strategic alignment with the overarching goals of the European Chips Act of increasing market share and technological advancement to strengthen the resilience of the EU’s semiconductor supply chains in times of ever-growing demand.   

    Silicon carbide is a critical material for high-power, high-temperature applications, and is extremely difficult to produce. onsemi is one of the only companies in the world with the ability to manufacture SiC-based semiconductors from crystal growth to advanced packaging solutions. By expanding its production facilities in the Czech Republic, onsemi would be faster to provide supply assurance for customers, strengthening its leadership in intelligent power solutions. This integration would also enable onsemi to leverage its latest advancements in research and development (R&D) to maximize manufacturing and production efficiency.

    Original – onsemi

    Comments Off on onsemi to Establish a Vertically Integrated SiC Manufacturing Facility in Czech Republic
  • Leapers Semiconductor Unveiled New LPS-Pack Series SiC Power Modules

    Leapers Semiconductor Unveiled New LPS-Pack Series SiC Power Modules

    2 Min Read

    At PCIM Europe 2024 Leapers Semiconductor unveiled the next-generation molded half-bridge SiC modules for main drive applications (LPS-Pack series). This new series was specifically developed to meet the unique requirements of a renowned international automotive manufacturer.

    Key Advantages of the New Module:

    • Innovative Design Concept: Utilizing Pressfit Pin technology for signal and current transmission, the design achieves SiC on PCB, allowing current to pass directly through the PCB. This significantly reduces the parasitic inductance of the module and system, minimizes the controller’s size, and lowers the cost of the controller’s busbar and capacitors.
    • Advanced Molding Process: The new molding process allows the module’s Tjmax to reach 200℃.
    • Unique Module Design: Ensures substrate flatness, facilitating large-area sintering between the module and the heatsink. This reduces the system’s thermal resistance and enhances yield control processes.
    • High Power Density: A single module (area < 26cm²) achieves a maximum current output of over 300 Arms. The system design is extremely compact and cost-effective.
    • Versatile Application: Suitable for platform-based and modular development applications. The series currently covers 300-600 Arms, addressing various power requirements for different customer applications.
    • Mass Production Ready: Offers superior product consistency and yield, making it more competitive than similar half-bridge modules.

    The LPS-Pack series’ distinctive design and unique advantages set it apart from other molded solutions.

    Original – Leapers Semiconductor

    Comments Off on Leapers Semiconductor Unveiled New LPS-Pack Series SiC Power Modules
  • ROHM Introduced TRCDRIVE pack™ Series with 2-in-1 SiC Molded Modules

    ROHM Introduced TRCDRIVE pack™ Series with 2-in-1 SiC Molded Modules

    2 Min Read

    ROHM has developed four models as part of the TRCDRIVE pack™ series with 2-in-1 SiC molded modules (two of 750V-rated: BSTxxxD08P4A1x4, two of 1,200V-rated: BSTxxxD12P4A1x1) optimized for xEV (electric vehicles) traction inverters. TRCDRIVE pack™ supports up to 300kW and features high power density and a unique terminal configuration – help solving the key challenges of traction inverters in terms of miniaturization, higher efficiency, and fewer person-hours.

    As the electrification of cars rapidly advances towards achieving a decarbonized society, the development of electric powertrain systems that are more efficient, compact, and lightweight is currently progressing. However, for SiC power devices that are attracting attention as key components, achieving low loss in a small size has been a difficult challenge. ROHM solves these issues inside powertrains with its TRCDRIVE pack™.

    A trademark brand for ROHM SiC molded type modules developed specifically for traction inverter drive applications, TRCDRIVE pack™ reduces size by utilizing a unique structure that maximizes heat dissipation area. On top, ROHM’s 4th Generation SiC MOSFETs with low ON resistance are built in – resulting in an industry-leading power density 1.5 times higher than that of general SiC molded modules while greatly contributing to the miniaturization of inverters for xEVs.

    The modules are also equipped with control signal terminals using press fit pins enabling easy connection by simply pushing the gate driver board from the top, reducing installation time considerably. In addition, low inductance (5.7nH) is achieved by maximizing the current path and utilizing a two-layer bus-bar structure for the main wiring, contributing to lower losses during switching.

    TRCDRIVE pack™ is scheduled to be launched by March 2025 with a lineup of 12 models in different package sizes (Small / Large) and mounting patterns (TIM: heat dissipation sheet / Ag sinter). In addition, ROHM is developing a 6-in-1 product with built-in heat sink that is expected to facilitate rapid traction inverter design and model rollout tailored to a variety of design specifications.

    Original – ROHM

    Comments Off on ROHM Introduced TRCDRIVE pack™ Series with 2-in-1 SiC Molded Modules
  • WeEn Semiconductors Introduced New SiC MOSFETs and SBDs in TSPAK Package

    WeEn Semiconductors Introduced New SiC MOSFETs and SBDs in TSPAK Package

    2 Min Read

    WeEn Semiconductors unveiled new families of silicon carbide (SiC) MOSFETs and Schottky Barrier Diodes (SBDs) in TSPAK packaging at this year’s PCIM Europe exhibition and conference. The company has also used the event to showcase for the first time a comprehensive range of integrated SiC power modules in Nuremberg, from June 11-13, 2024. 

    WeEn Semiconductor’s new TSPAK MOSFET and SBD devices address the demand for high-performance, compact and reliable power management in applications ranging from automotive charging and on-board charger applications to photovoltaic (PV) inverters and high-power-density power supplies (PSUs).

    Offering a variety of configuration options for maximum design flexibility, the company’s new SiC modules are ideal for applications such as EV charging, energy storage systems, PV inverters, motor drives, industrial PSUs and test instrumentation.

    Originally developed for automotive applications, TSPAK devices combine innovative top-side cooling capability with low thermal impedance to deliver enhanced thermal performance. By removing the PCB thermal resistance from the thermal dissipating path, the Junction-Ambient thermal resistance improves by 16-19%.

    This supports high reliability by enabling a greater number of power cycles than conventional packaging as well as providing the increased power densities demanded by compact system designs. Low circuit inductance and low EMC noise help to improve performance and reduce filtering requirements. The WeEn Semiconductors family of TSPAK MOSFETs features 650V, 750V, and 1200V options with resistances ranging from 12mΩ to 150mΩ. TSPAK SBDs are available with current ratings of 10 to 40A in 650V, 750V, and 1200V variants.

    Visitors to WeEn’s stand in Hall 9, booth 538, will have the first opportunity to explore the company’s extensive range of SiC power modules. With a wide range of topology options, including half-bridge, four-pack, six-pack, and MPPT booster configurations, the power modules support voltages ranging from 650V to 1200V. Depending on the option chosen and special designs, modules incorporate a variety of advanced features including synchronized chip current sharing, integrated temperature sensors, topside cooling structures and the latest clip-bond technologies.

    Original – WeEn Semiconductors

    Comments Off on WeEn Semiconductors Introduced New SiC MOSFETs and SBDs in TSPAK Package
  • SemiQ Expands QSiC™ Product Line with 1700V SiC Schottky Discrete Diodes and Dual Diode Packs

    SemiQ Expands QSiC™ Product Line with 1700V SiC Schottky Discrete Diodes and Dual Diode Packs

    2 Min Read

    SemiQ Inc announced the addition of 1700V SiC Schottky discrete diodes and dual diode packs to its QSiC™ product line. The new devices meet the size and power demands of a wide range of demanding applications including switched-mode power supplies, uninterruptible power supplies (UPS), induction heaters, welding equipment, DC/DC converters, solar inverters and electric vehicle (EV) charging stations.

    Featuring zero reverse recovery current and near-zero switching loss, SemiQ’s 1700V SiC Schottky diode technologies offer enhanced thermal management that reduces the need for cooling. As a result, engineers can implement highly efficient, high-performance designs that minimize system heat dissipation, allow the use of smaller heatsinks and lead to cost and space savings. All of the new products support fast switching across operating junction temperatures (Tj) of -55 °C to 175 °C.

    The GP3D050B170X (bare die) and GP3D050B170B (TO-247-2L package) discrete diode is rated for respective maximum forward currents of 110A and 151A. Device design supports easy parallel configurations, enhancing flexibility and scalability for various power applications.

    The GHXS050B170S-D3 and GHXS100B170S-D3 dual diode packs are rugged modules supplied in a SOT-227 package. Maximum respective forward currents are 110A and 214A and each combine outstanding performance at high-frequencies with low loss and low EMI operation. ensure energy efficiency and reliability by minimizing interference.

    Key features include low stray inductance, high junction temperature operation, rugged and easy mounting, and an internally isolated package (AIN), which provides optimal insulation and thermal conductivity. Low junction-to-case thermal resistance enables efficient heat dissipation, ensuring stability under high-power conditions. The modules can be easily connected in parallel due to the positive temperature coefficient (Tc) of the forward voltage (Vf).

    “Our new 1700V SiC diodes represent a leap forward in power efficiency and reliability,” said Dr. Timothy Han, President at SemiQ. “With their compact and flexible design, low-loss operation, and superior thermal management, our QSiC™ diodes will enable our customers to create innovative, high-performance solutions while reducing costs and improving overall system efficiency.”

    All parts have been tested at voltages exceeding 1870V and have undergone avalanche testing up to 1250mJ. Visitors to SemiQ’s stand at Alfatec’s booth (Hall 7, 418) at PCIM Europe will have the first opportunity to explore the new 1700V SiC diodes.

    Original – SemiQ

    Comments Off on SemiQ Expands QSiC™ Product Line with 1700V SiC Schottky Discrete Diodes and Dual Diode Packs
  • Applied EV Selected CISSOID's new CXT-ICM3SA SiC Inverter Control Modules to Drive Autonomous Vehicle E-Motors

    Applied EV Selected CISSOID’s new CXT-ICM3SA SiC Inverter Control Modules to Drive Autonomous Vehicle E-Motors

    2 Min Read

    Applied EV, a leader in vehicle control system technologies for Software Defined Machines™, announced they have selected CISSOID’s new CXT-ICM3SA series of Silicon Carbide Inverter Control Modules (ICMs) to drive their latest generation of autonomous vehicle E-motors.

    Dedicated to the E-mobility market, CISSOID’s software-powered SiC ICMs are augmented with onboard programmable hardware, accelerating the response time to critical events, off-loading the processor cores and enhancing functional safety. 

    The ICM is integrated into Applied EV’s Digital Backbone™, a centralised control system combining state-of-the-art software and hardware, setting a new benchmark for safety rated vehicles. 

    Applied EV’s CEO, Julian Broadbent, said “Both Applied EV and CISSOID recognise functional safety is critical in the development and deployment of autonomous vehicles. The partnership integrates CISSOID’s ICMs into our Digital Backbone, allowing for a faster development cycle, giving our customer the safest vehicle in the shortest time possible.” 

    CISSOID’s CEO, Dave Hutton, said: “We are excited to embark on this collaborative journey with Applied EV to drive innovation in e-mobility. By combining our expertise in electric motor design with Applied EV’s proficiency in software and vehicle integration, the aim is to deliver a game-changing electric motor drive platform for the future of mobility together.” 

    The collaboration underscores the shared commitment to driving positive change in the automotive industry and contributing to a more sustainable future for transportation globally.

    Original – CISSOID

    Comments Off on Applied EV Selected CISSOID’s new CXT-ICM3SA SiC Inverter Control Modules to Drive Autonomous Vehicle E-Motors
  • Nexperia Expands SiC Diodes Portfolio

    Nexperia Expands SiC Diodes Portfolio

    2 Min Read

    Nexperia announced that its class-leading 650 V, 10 A silicon carbide (SiC) Schottky diode is now automotive qualified (PSC1065H-Q) and available in real-two-pin (R2P) DPAK (TO-252-2) packaging, making it suitable for various applications in electric vehicles and other automobiles.

    Additionally, in a further extension to its portfolio of SiC diodes, Nexperia is now also offering industrial-grade devices with current ratings of 6  A, 16 A, and 20 A in TO-220-2, TO-247-2, and D2PAK-2 packaging to facilitate greater design flexibility. These diodes address the challenges of demanding high voltage and high current applications including switched-mode power supplies, AC-DC and DC-DC converters, battery-charging infrastructure, motor drives, uninterruptible power supplies as well as photovoltaic inverters for sustainable energy production.

    The merged PiN Schottky (MPS) structure of these devices provides additional advantages over similar competing SiC diodes, including outstanding robustness against surge currents. This eliminates the need for additional protection circuitry, thereby significantly reducing system complexity and enabling hardware designers to achieve higher efficiency with smaller form factors in rugged high-power applications. Nexperia’s consistent quality across various semiconductor technologies provides designers with confidence in the reliability of these diodes.

    In addition, Nexperia’s ‘thin SiC’ technology delivers a thinner substrate (one-third of its original thickness) which dramatically reduces the thermal resistance from the junction to the back-side metal. This results in lower operating temperature, higher reliability and device lifetime, higher surge current capability, and lower forward voltage drop.

    “We’ve seen an excellent market response to the initial release of our SiC diodes. They have proven themselves in design-ins with one notable example in power supplies for industrial applications, where customers have achieved especially good results. The superior reverse recovery of these diodes translates to high efficiency in real-world use”, says Katrin Feurle, Senior Director and Head of Product Group SiC Diodes & FETs at Nexperia. “We are particularly excited that this is our first automotive-qualified product, and it is already recognized by major automotive players for its performance and reliability.”

    Original – Nexperia

    Comments Off on Nexperia Expands SiC Diodes Portfolio
  • Qorvo® Announced Industry's First 4 mOhm SiC JFET in TOLL Package

    Qorvo® Announced Industry’s First 4 mOhm SiC JFET in TOLL Package

    2 Min Read

    Qorvo® announced the industry’s first 4 milliohm silicon carbide (SiC) junction field effect transistor (JFET) in a TOLL package. It was designed for circuit protection applications including solid-state circuit breakers, where low resistance, superior thermal performance, small size and reliability are paramount. 

    With RDS(on) of just 4 milliohm, the UJ4N075004L8S offers the industry’s lowest on-resistance among the 650V to 750V class of power devices in standard discrete packages. This low RDS(on) drives significant reductions in heat generation and, when coupled with a compact TOLL package, enables a solution size that is 40% smaller than competing devices in TO-263 packages.

    This small solution size supports the space-limited dimensions of today’s electromechanical circuit breakers and operates without the need for elaborate cooling systems, accelerating the transition from electromechanical circuit breakers to semiconductor-based solid-state circuit breakers (SSCBs).

    “With the introduction of the UJ4N075004L8S, Qorvo continues to lead the way in SiC power innovation, catalyzing the emergence of applications such as circuit protection with ultra-low RDS(on) FET offerings in very small footprints,” said Ramanan Natarajan, director of product line marketing for Qorvo’s SiC Power Products business. “The SSCB market is growing rapidly, and Qorvo’s newest product marks a significant milestone in the evolution of the technology.”

    Qorvo’s JFETs are highly robust devices well suited to meet the challenges of circuit protection, providing the ability to turn off at very high inrush currents during circuit faults. Qorvo’s newest JFET can also withstand high instantaneous junction temperatures without experiencing degradation or parametric drift. The normally-on nature of the JFET lends itself to seamless integration into systems where the switch is in the on-state by default and in turn-off state under fault conditions.

    The UJ4N075004L8S is now available for sampling and will enter full production in Q4 2024, accompanied by additional JFET options, including 750V with 5 milliohm and 1200V with 8 milliohm ratings, all in TO-247 packaging. For more details about this transformative power technology and detailed product specifications, please visit UJ4N075004L8S.

    Original – Qorvo

    Comments Off on Qorvo® Announced Industry’s First 4 mOhm SiC JFET in TOLL Package