STMicroelectronics Tag Archive

  • Ampere and STMicroelectronics Agree on Long-Term Supply of SiC Power Modules

    Ampere and STMicroelectronics Agree on Long-Term Supply of SiC Power Modules

    3 Min Read

    Ampere, the intelligent electric vehicle pure player born from Renault Group and STMicroelectronics announced the next step in their strategic co-operation, starting in 2026, with  a multi-year agreement between STMicroelectronics and Renault Group on the supply of Silicon Carbide (SiC) power modules, as part of their collaboration on a powerbox for the inverter for Ampere’s ultra-efficient electric powertrain.

    Ampere and STMicroelectronics worked together on the optimization of the power module, the key element in the powerbox, to get the highest performance and best competitiveness in the e-powertrain, leveraging Ampere’s expertise in EV technology and STMicroelectronics’ expertise in advanced power electronics.

    This agreement is the result of the intensive work carried out with STMicroelectronics. By working upstream together, we were able to optimize and secure the supply of key components for our electric powertrains, to offer high performance EVs with increased range and optimized charging time. It perfectly aligns with Ampere’s strategy to master the entire value chain of power electronics for its e-powertrain, leveraging STMicroelectronics’ expertise in power modules,” said Philippe Brunet, SVP Powertrain & EV engineering, Ampere.

    ST is at the cutting edge of the development of advanced power electronics enabling the mobility industry to improve the performance of electrified platforms. With the optimization of these higher-efficient products and solutions to meet Ampere’s performance requirements, and our vertically integrated silicon carbide supply chain, we are supporting  Ampere’s strategy for its next generation of electric powertrain,”  said Michael Anfang, Executive Vice President Sales & Marketing, Europe, Middle East and Africa Region, STMicroelectronics. “ST and Ampere share a common vision for more sustainable mobility and this agreement marks another step forward in improved power performance to further contribute to concrete improvements to carbon emissions reduction by the mobility industry and its supply chain.”

    Power modules, composed of numerous silicon carbide chips, manage and convert electrical power from the battery to drive the electric motor. They play a crucial role in the efficiency of the electric powertrain and battery range, as well as energy regeneration features, making them a key element of the efficiency of an electric car. They also contribute to the smoothness and responsiveness of driving.

    STMicroelectronics and Ampere have collaborated on a powerbox for the supply of energy to Ampere’s new generation of electric motors. The powerbox is designed for optimum performance-size ratio across Ampere’s line-up, on 400 Volt battery EV vehicles and for Segment C-EVs with 800 Volt batteries, enabling greater autonomy and faster charging. 800 Volts is one of the key levers to achieve the 10%-80% quick charge in 15 minutes or less. This agreement is fully aligned with Ampere’s strategy to master the entire value chain of the electric vehicle, particularly by working further upstream with its partners and ensuring the best efficiency at each step.

    As an integrated device manufacturer (IDM), STMicroelectronics ensures quality and security of supply to serve carmakers’ strategies for electrification. The collaboration with Ampere on the silicon carbide power modules and powerbox demonstrates STMicroelectronics’ leadership and system level experience of advanced power electronics, including its packaging expertise.

    Original – Ampere

    Comments Off on Ampere and STMicroelectronics Agree on Long-Term Supply of SiC Power Modules
  • STMicroelectronics Shared 2027-2028 Financial Model and Path Towards 2030

    STMicroelectronics Shared 2027-2028 Financial Model and Path Towards 2030

    1 Min Read

    STMicroelectronics hosted its Capital Markets Day in Paris, France. Within the framework of an unchanged strategy, ST is reiterating its $20 billion plus revenue ambition and associated financial model, that it now expects to be reached by 2030. ST is also setting an intermediate financial model with revenues expected around $18 billion with an operating margin within a 22% to 24% range in 2027-2028.

    With the execution of its manufacturing reshaping program and cost base resizing initiative, ST expects to exit 2027 with high triple-digit million-dollar savings compared to the current cost base. This will enable the company to reach an operating margin between 22 and 24% in 2027-2028.

    ST’s value proposition remains focused on sustainable and profitable growth, providing differentiating enablers to customers with a strong commitment to sustainability. With its customers and partners, ST will continue to be a key actor of the transformation of all industries towards a smarter, safer and more sustainable future.

    Original – STMicroelectronics

    Comments Off on STMicroelectronics Shared 2027-2028 Financial Model and Path Towards 2030
  • STMicroelectronics Released an Advanced Galvanically Isolated Gate Drivers for IGBTs and SiC MOSFETs

    STMicroelectronics Released an Advanced Galvanically Isolated Gate Drivers for IGBTs and SiC MOSFETs

    2 Min Read

    STMicroelectronics’ STGAP3S family of gate drivers for silicon-carbide (SiC) and IGBT power switches combines ST’s latest robust galvanic isolation technology with optimized desaturation protection and flexible Miller-clamp architecture.

    Featuring reinforced capacitive galvanic isolation between the gate-driving channel and the low-voltage control and interface circuitry, the STGAP3S withstands 9.6kV transient isolation voltage (VIOTM) with 200V/ns common-mode transient immunity (CMTI). With its state-of-the-art isolation, the STGAP3S enhances reliability in motor drives for industrial applications such as air conditioning, factory automation, and home appliances. The new drivers are also used in power and energy applications including charging stations, energy storage systems, power-factor correction (PFC), DC/DC converters, and solar inverters.

    The STGAP3S product family includes different options with 10A and 6A current capability, each of them available with differentiated Under Voltage Lock-Out (UVLO) and desaturation intervention thresholds. This helps designers select the best device to match the performance of their chosen SiC MOSFET or IGBT power switches.

    The Desaturation protection implements an overload and short-circuit protection for the external power switch providing the possibility to adjust the turn-off strategy using an external resistor to maximize the protection turn-off speed while avoiding excessive overvoltage spikes. The undervoltage-lockout protection prevents turn-on with insufficient drive voltage.

    The driver’s integrated Miller Clamp architecture provides a pre-driver for an external N-channel MOSFET. Designers can thus leverage flexibility to select a suitable intervention speed that prevents induced turn-on and avoids cross conduction.

    The available device variants allow a choice of 10A sink/source and 6A sink/source drive-current capability for optimum performance with the chosen power switch with desaturation-detection and UVLO thresholds optimized for IGBT or SiC technology. The fault conditions of desaturation, UVLO and overtemperature protection are notified with two dedicated open drain diagnostic pins.

    Original – STMicroelectronics

    Comments Off on STMicroelectronics Released an Advanced Galvanically Isolated Gate Drivers for IGBTs and SiC MOSFETs
  • STMicroelectronics Opened a Design and Industrialization Center in Pisa

    STMicroelectronics Opened a Design and Industrialization Center in Pisa

    3 Min Read

    STMicroelectronics inaugurated its new design and industrialization center, equipped with a test lab, in Pisa Montacchiello, Italy. The CEO of STMicroelectronics Italy, Lucio Colombo, and the Rector of the University of Pisa, Riccardo Zucchi, cut the ribbon of the new center, the thirteenth ST site in Italy and the first in Tuscany.

    The center, built in collaboration with professors from the University of Pisa’s Department of Information Engineering, currently houses around 40 people mainly dedicated to the design and industrialization of integrated circuits. They include analog and digital designers with different skills, together with researchers and thesis students from the University of Pisa.

    Most of the designers belong to ST’s APMS Product Group’s Analog Custom Devices (ACD) division, which works on the design and development of products for the consumer electronics market. In particular, the Pisa team of the ACD division focuses on products for wireless charging and power management. Their goal is to identify and implement innovative solutions to improve the efficiency of battery-powered devices like smartphones. The center is equipped with a test lab to carry out the validation and industrialization of the products developed on-site.

    In addition to inaugurating and visiting the center, Riccardo Zucchi and Lucio Colombo signed a framework agreement, the purpose of which is to – support the training of qualified students and graduates by collaborating on teaching courses for the University and by setting up scholarships in line with current regulations;

    – contribute to studies and research focused on technological innovation within the center’s areas of expertise and interest;
    – to uphold the high cultural standards of its operators and promote their professional development through meaningful contacts and cooperation with the University through courses guaranteed by the University.

    “The Pisa Center was born 20 months ago with the aim of growing quickly by acquiring talent in the area, thanks to the collaboration with the University of Pisa, but also by attracting talent eager to return to Tuscany in search of the job opportunities offered by a global leader,” said Lucio Colombo, CEO of STMicroelectronics Italy.  “This is a model that ST has applied over the years at Italian universities close to its research and production centers.”

    “The goal was to reach around 40 employees in two years and to date we are satisfied with the progress made. The Center relies on electronics engineers with mixed skills: analog/digital/software and testing, and with different seniority, together with researchers and thesis students,” explains Patrizia Milazzo, ACD Director, STMicroelectronics. “We believe that the rapid development of the center was made possible through the great collaboration with the University and the determination of ST colleagues, who were strongly dedicated to creating a center of excellence in Tuscany.”

    Original – STMicroelectronics

    Comments Off on STMicroelectronics Opened a Design and Industrialization Center in Pisa
  • STMicroelectronics Published Q3 2024 Financial Results

    STMicroelectronics Published Q3 2024 Financial Results

    2 Min Read

    STMicroelectronics N.V. (“ST”) reported U.S. GAAP financial results for the third quarter ended September 28, 2024. ST reported third quarter net revenues of $3.25 billion, gross margin of 37.8%, operating margin of 11.7%, and net income of $351 million or $0.37 diluted earnings per share. Jean-Marc Chery, ST President & CEO, commented:

    • “Q3 net revenues were in line with the midpoint of our business outlook range. Our revenues, compared to our expectations, were higher in Personal Electronics, declined less in Industrial and were lower in Automotive. Q3 gross margin of 37.8% was broadly in line with the mid-point of our business outlook range.”
    • “First nine months net revenues decreased 23.5% year-over-year across all reportable segments, particularly in Microcontrollers, which is impacted by a continuing weakness in the Industrial market. Operating margin was 13.1% and net income was $1.22 billion.”
    • “Our fourth quarter business outlook, at the mid-point, is for net revenues of $3.32 billion, decreasing yearover-year by 22.4% and increasing sequentially by 2.2%; gross margin is expected to be about 38%, impacted by about 400 basis points of unused capacity charges.”
    • “The midpoint of this outlook translates into full year 2024 revenues of about $13.27 billion, representing a 23.2% year-over-year decrease, in the low-end of the range indicated in the previous quarter, and a gross margin slightly below that provided in such indication.”
    • “Based on our current customer order backlog and demand visibility, we anticipate a revenue decline between Q4 2024 and Q1 2025 well above normal seasonality.”
    • “We are launching a new company-wide program to reshape our manufacturing footprint accelerating our wafer fab capacity to 300mm Silicon (Agrate and Crolles) and 200mm Silicon Carbide (Catania) and resizing our global cost base. This program should result in strengthening our capability to grow our revenues with an improved operating efficiency resulting in annual cost savings in the high triple-digit million-dollar range exiting 2027.”

    Original – STMicroelectronics

    Comments Off on STMicroelectronics Published Q3 2024 Financial Results
  • STMicroelectronics Introduced Generation 4 STPOWER SiC MOSFET Technology

    STMicroelectronics Introduced Generation 4 STPOWER SiC MOSFET Technology

    4 Min Read

    STMicroelectronics introduced its fourth generation STPOWER silicon carbide (SiC) MOSFET technology. The Generation 4 technology brings new benchmarks in power efficiency, power density and robustness. While serving the needs of both the automotive and industrial markets, the new technology is particularly optimized for traction inverters, the key component of electric vehicle (EV) powertrains. The company plans to introduce further advanced SiC technology innovations through 2027 as a commitment to innovation.

    “STMicroelectronics is committed to driving the future of electric mobility and industrial efficiency through our cutting-edge silicon carbide technology. We continue to advance SiC MOSFET technology with innovations in the device, advanced packages, and power modules,” said Marco Cassis, President, Analog, Power & Discrete, MEMS and Sensors Group. “Together with our vertically integrated manufacturing strategy, we are delivering industry leading SiC technology performance and a resilient supply chain to meet the growing needs of our customers and contribute to a more sustainable future.”

    As the market leader in SiC power MOSFETs, ST is driving further innovation to exploit SiC’s higher efficiency and greater power density compared to silicon devices. This latest generation of SiC devices is conceived to benefit future EV traction inverter platforms, with further advances in size and energy-saving potential. While the EV market continues to grow, challenges remain to achieve widespread adoption and car makers are looking to deliver more affordable electric cars.

    800V EV bus drive systems based on SiC have enabled faster charging and reduced EV weight, allowing car makers to produce vehicles with longer driving ranges for premium models. ST’s new SiC MOSFET devices, which will be made available in 750V and 1200V classes, will improve energy efficiency and performance of both 400V and 800V EV bus traction inverters, bringing the advantages of SiC to mid-size and compact EVs — key segments to help achieve mass market adoption.

    The new generation SiC technology is also suitable for a variety of high-power industrial applications, including solar inverters, energy storage solutions and datacenters, significantly improving energy efficiency for these growing applications.

    ST has completed qualification of the 750V class of the fourth generation SiC technology platform and expects to complete qualification of the 1200V class in the first quarter of 2025. Commercial availability of devices with nominal voltage ratings of 750V and 1200V will follow, allowing designers to address applications operating from standard AC-line voltages up to high-voltage EV batteries and chargers.

    ST’s Generation 4 SiC MOSFETs provide higher efficiency, smaller components, reduced weight, and extended driving range compared to silicon-based solutions. These benefits are critical for achieving widespread adoption of EVs and leading EV manufacturers are engaged with ST to introduce the Generation 4 SiC technology into their vehicles, enhancing performance and energy efficiency. While the primary application is EV traction inverters, ST’s Generation 4 SiC MOSFETs are also suitable for use in high-power industrial motor drives, benefiting from the devices’ improved switching performance and robustness.

    This results in more efficient and reliable motor control, reducing energy consumption and operational costs in industrial settings. In renewable energy applications, the Generation 4 SiC MOSFETs enhance the efficiency of solar inverters and energy storage systems, contributing to more sustainable and cost-effective energy solutions. Additionally, these SiC MOSFETs can be utilized in power supply units for server datacenters for AI, where their high efficiency and compact size are crucial for the significant power demands and thermal management challenges.

    To accelerate the development of SiC power devices through its vertically integrated manufacturing strategy, ST is developing multiple SiC technology innovations in parallel to advance power device technologies over the next three years. The fifth generation of ST SiC power devices will feature an innovative high-power density technology based on planar structure.  ST is at the same time developing a radical innovation that promises outstanding on-resistance RDS(on) value at high temperatures and further RDS(on) reduction, compared to existing SiC technologies.

    ST will attend ICSCRM 2024, the annual scientific and industry conference exploring the newest achievements in SiC and other wide bandgap semiconductors. The event, from September 29 to October 04, 2024, in Raleigh, North Carolina will include ST technical presentations and an industrial keynote on ‘High volume industrial environment for leading edge technologies in SiC’.

    Original – STMicroelectronics

    Comments Off on STMicroelectronics Introduced Generation 4 STPOWER SiC MOSFET Technology
  • STMicroelectronics Joins Quintauris

    STMicroelectronics Joins Quintauris

    1 Min Read

    STMicroelectronics has joined Quintauris GmbH as its sixth shareholder. ST joins other Quintauris shareholders, Robert Bosch GmbH, Infineon Technologies AG, Nordic Semiconductor ASA, NXP® Semiconductors, and Qualcomm Technologies, Inc.

    Quintauris was founded in December 2023 to advance the adoption of products based on RISC-V principles. This will include access to reference architectures, and assistance in the creation of versatile, cross-industry solutions. The initial core industry applications will be for the automotive sector, with a planned expansion to mobile and IoT.

    RISC-V is an open-standard Instruction Set Architecture (ISA), originally developed by researchers at the University of California, Berkeley, in 2010.

    “ST is a welcome addition to our list of shareholders,” said Alexander Kocher, CEO, Quintauris.“By fostering collaboration between the world’s largest semiconductor companies, we aim to explore and unlock the potential of RISC-V for all the industries we will serve.”

    Original – STMicroelectronics

    Comments Off on STMicroelectronics Joins Quintauris
  • STMicroelectronics Reported Q2 2024 Results

    STMicroelectronics Reported Q2 2024 Results

    1 Min Read

    STMicroelectronics reported second quarter net revenues of $3.23 billion, gross margin of 40.1%, operating margin of 11.6%, and net income of $353 million or $0.38 diluted earnings per share.

    Jean-Marc Chery, ST President & CEO, commented:

    • “Q2 net revenues were above the midpoint of our business outlook range driven by higher revenues in Personal Electronics, partially offset by lower than expected revenues in Automotive. Gross margin was in line with expectations.”
    • “First half net revenues decreased 21.9% year-over-year, mainly driven by a decrease in Microcontrollers and Power and Discrete segments. Operating margin was 13.8% and net income was $865 million.”
    • “During the quarter, contrary to our prior expectations, customer orders for Industrial did not improve and Automotive demand declined.”
    • “Our third quarter business outlook, at the mid-point, is for net revenues of $3.25 billion, decreasing year-overyear by 26.7% and increasing sequentially by 0.6%; gross margin is expected to be about 38%, impacted by about 350 basis points of unused capacity charges.”
    • “We will now drive the Company based on a plan for FY24 revenues in the range of $13.2 billion to $13.7 billion. Within this plan, we expect a gross margin of about 40%.”

    Original – STMicroelectronics

    Comments Off on STMicroelectronics Reported Q2 2024 Results
  • STMicroelectronics Announced the Third Edition of the Second-Level Master’s Program in “Power Electronics Devices and Technologies”

    STMicroelectronics Announced the Third Edition of the Second-Level Master’s Program in “Power Electronics Devices and Technologies”

    3 Min Read

    The third edition of the second-level master’s program in “Power Electronics Devices and Technologies” organized by the Department of Electrical, Electronic and Information Engineering (DIEEI) of the University of Catania together with STMicroelectronics has been announced.

    The goal of the master’s program is to train specialists in technologies based on Wide Band-Gap semiconductors, the new frontier of power electronics that ensures more efficient performance in line with the sustainable development goals defined by Agenda 2030. These technologies are for use in production processes in industries such as automotive, renewable energy, and electrical energy conversion and storage.

    There is a strong market demand for highly specialized professionals trained in the field of power electronics, to meet the needs identified by macro-trends in terms of energy efficiency and the electrification of mobility in the frame of sustainable development,”said Professor Mario Cacciato, coordinator of the master’s program.

    This second-level master’s program offers to master’s graduates in different STEM disciplines opportunities to complete the training and focus it on topics of great interest for research and industry. In addition, the master’s program constitutes a synergistic model for the professional development of young talent from academia together with the industrial world, as effectively demonstrated by the first two editions of the master’s program.”

    STMicroelectronics’ site in Catania is a center of excellence in the European arena for power electronics technologies, thanks in part to the strategic investment in the vertically integrated production of Silicon Carbide devices,” said Gianfranco Di Marco, Power Transistor Sub-Group, Chief of staff and Technical Communication Manager at STMicroelectronics.

    Training specialized profiles and skills in the field of power electronics with multidisciplinary knowledge is essential for fostering technological innovation. This third edition follows the success of the previous ones with theoretical lectures held at University of Catania and internships at ST’s Catania site allowing students to experience working with a leader in power semiconductors. This will forge a close connection between the world of education and the world of work, an essential prerequisite for the sustainable development of the area, and the creation of new career opportunities for students.” 

    The second-level master’s program offers theoretical and practical training, divided into 7 teaching modules in English. Lectures will be taught by university professors and appropriate specialists from within STMicroelectronics, who will also act as mentors during their internship in the company’s departments and research laboratories. Some lectures, moreover, will be held at ST’s Catania site. Finally, students will participate in seminars held by experts from several major world’s corporations in the industry.

    The training course is open to those with a master’s degree obtained in the last five years in:

    • Electronic engineering (LM/29);
    • Electrical engineering (LM/28);
    • Computer and information engineering (LM/32);
    • Mechanical engineering (LM/33);
    • Chemical engineering (LM22);
    • Automation engineering (LM25);
    • Telecommunications engineering (LM/27);
    • Physics (LM17);
    • Materials science and engineering (LM/53);
    • Chemical sciences (LM/54);

    Proficiency in English is required.

    A maximum of 30 participants will be admitted to this master’s degree program. The top 10 in the eligible list will be awarded a scholarship. Those ranking from 11th to 20th will receive a contribution to the tuition fee. Applications must be submitted by September 30, 2024. More information is available here.

    The Scientific Committee members are the University of Catania faculty members Mario Cacciato (coordinator), Giuseppe Compagnini, Guglielmo Guido Condorelli, Salvatore Mirabella, Salvatore Pennisi and Antonio Terrasi; and Giuseppe Arena, Michele Calabretta, Gianfranco Di Marco, Vincenzo Randazzo, Mario Saggio, Rosario Scollo, Filippo Scrimizzi and Gabriele Bellocchi of STMicroelectronics.

    Original – STMicroelectronics

    Comments Off on STMicroelectronics Announced the Third Edition of the Second-Level Master’s Program in “Power Electronics Devices and Technologies”
  • STMicroelectronics and Geely Signed a Long-Term SiC Supply Agreement

    STMicroelectronics and Geely Signed a Long-Term SiC Supply Agreement

    4 Min Read

    STMicroelectronics and Geely Auto Group have signed a long-term Silicon Carbide (SiC) supply agreement to accelerate their existing cooperation on SiC devices. Under the terms of this multi-year contract, ST will provide multiple Geely Auto brands with SiC power devices for mid-to-high-end battery electric vehicles (BEVs), boosting Geely Auto’s NEV transformation strategy with improved performance, faster charging speeds and extended driving range.

    In addition, building on their longstanding cooperation across multiple automotive applications, Geely and ST have established a joint lab to exchange information and explore innovative solutions related to automotive Electronics/Electrical (E/E) architectures (i.e. in-vehicle infotainment, smart cockpit systems), advanced driver assistance (ADAS), and NEVs.

    Geely Auto Group has adopted ST’s third generation SiC MOSFET devices in electric traction inverters. The traction inverter is the core of electric powertrains and SiC MOSFETs maximize their efficiency. The combination of advanced inverter design with high-efficiency power semiconductors, like SiC, is the key to superior electric vehicle performance.

    “We are very pleased to establish a win-win cooperation with STMicroelectronics, to empower each other and fully utilize our respective advantages and resources.I believe that through the form of innovation joint lab, Geely and ST can deepen our cooperation, achieve mutual benefit, and accelerate the development and implementation of innovative technologies in Geely Auto,” said Li Chuanhai, President of Electronic and Electrical Center of Geely Automotive Central Research Institute.

    “We are pleased to have a deep cooperation with global automotive semiconductor leader STMicroelectronics to establish an innovation joint lab. Both sides will deepen long-term cooperation in fields such as smart driving to jointly focus on customer needs, accelerate the implementation of new products and solutions, and shape an efficient cooperation mode. I believe that this cooperation will be beneficial for both parties to conduct more forward-looking technical research based on the development trends of smart, electrified, and connected cars. Geely is delighted to leverage STMicroelectronics’ leading automotive business solutions to be well positioned in product performance, system integration, and overall market competitiveness,” said Fu Zhaohui, Director of the Electronic and Electrical Center of Geely Automotive Central Research Institute.

    “Geely Auto, is a shining example of automotive innovation in China, making rapid progress in car electrification and digitalization, while expanding its presence in the global market. This long-term SiC supply agreement and the joint lab establishment mark a significant step forward in our long-established cooperation,” said Henry Cao, Executive Vice President of Sales & Marketing, China Region, STMicroelectronics. “China is the biggest NEV market worldwide and a leading innovator. Our local competence centers and joint labs with our customers across the value chain of automotive allow ST to better support automotive innovation and transformation in China.”

    As a leading global automobile manufacturer and China’s top automotive brand, Geely Auto sold a total of 1.68 million vehicles in 2023, with NEV sales reaching 480,000 units, accounting for 28% of the Company’s total sales for the year. This NEV sales volume represents a year-over-year increase of 48%, demonstrating Geely Auto’s successful transition towards NEV and its growing impact in the industry.

    With a state-of-the-art SiC manufacturing process and a completely vertically integrated supply-chain, ST provides SiC devices for a wide range of EV applications including traction inverter, OBC (onboard charger), DC-DC converter, EV charging station and e-compressor application, significantly enhancing the performance, efficiency, and range of NEVs. In June 2023, ST and Sanan Optoelectronics, a market leader in compound semiconductors in China, announced the creation of a new 200mm SiC device manufacturing JV in Chongqing, China. This facility will better support the needs of Chinese customers as ST collaborates with more leading Chinese carmakers, industrial customers, and solution providers in SiC, to accelerate the pace of electrification in China.

    Original – STMicroelectronics

    Comments Off on STMicroelectronics and Geely Signed a Long-Term SiC Supply Agreement