WBG Tag Archive

  • Vitesco Technologies SiC-Based High Voltage Box Delivers Superb Efficiency

    Vitesco Technologies SiC-Based High Voltage Box Delivers Superb Efficiency

    4 Min Read

    Vitesco Technologies is preparing the series application of its High Voltage Box. The modular system makes charging, converting and distributing electricity in electric vehicles cheaper by integrating several functions in one unit, depending on the design.

    This includes the vehicle On-Board Charger for AC charging on the grid with up to 22 kW of charging power, a DC current converter providing the current for the 12 V vehicle net, and power electronics which distribute high voltage power in the vehicle and facilitate fast DC-charging with up to 800 V. 

    Owed to the high level of mechatronic integration, the High Voltage Box has smaller space requirements to the vehicle while increasing the total system reliability in comparison to individual devices. State-of-the art silicon carbide (SiC) semiconductors boost charging efficiency to over 95 percent which lowers the vehicle owner’s electricity bill. This efficiency level is particularly beneficial for car owners because electric vehicles are frequently charged on the grid.

    Due to the high AC charging rate of up to 22 kW the High Voltage Box charges the car with 200 km of range in under two hours. DC high-power charging with up to 800 V achieves the same range in 12 minutes. The sophisticated power electronics ensure that this system offers electrical safety as well as efficiency.

    On a day-to-day level, charging, energy conversion and power distribution are just as relevant for a driver’s satisfaction with a vehicle as driving itself is. With our High Voltage Box, we integrate these core tasks of energy management into one efficient and compact unit. This integration makes electrification on a large scale and at low cost easier.

    Thomas Stierle, Member of the Executive Board and head of the Electrification Solutions division of Vitesco Technologies

    Today, the so-called On-Board Charger (OBC) for charging with alternating current (AC) on the grid is a separate device in the vehicle. This OBC inverts grid power to direct current (DC) that can be fed to the high voltage battery. Another separate device is the DC/DC converter which provides direct current from the high voltage battery to the 12 V power net – or it boosts 12 V to high voltage DC. A power electronics unit distributes high voltage current within the vehicle (hence: Power Distribution Unit, PDU). In addition, these electronics can be designed to allow DC charging with up to 800 V at high power charging points. All those components need to be connected, they require a housing, installation space, and cooling.

    The modular and scalable High Voltage Box makes it easier to cover two or more of these functions with a single device. SiC technology is used to minimize the conversion losses of the unit:

    A high level of efficiency brings the car owner’s electricity bill down and contributes to sustainability.

    Christian Preis, Head of Base Development Energy Transformation at Vitesco Technologies

    Within the modular design Vitesco Technologies covers all relevant European and worldwide grid topologies. The High Voltage Box was developed to support modular vehicle adaptation for the global market. At the same time, Vitesco Technologies is driving new functions ahead. The High Voltage Box for one of the two series applications will already function bidirectionally so that it can supply alternating current with 230 V from the DC battery current when this is required.

    This puts vehicle owners in the comfortable position to make versatile use of their large battery. For instance, if they wish to use power tools far away from the grid, or if they want to feed electricity to the grid which they have charged earlier from their own photovoltaic system. “In the future, this option to stabilize the grid will continue to gain importance “, Preis adds. The company’s experts are advancing the necessary standard for this in key committees and are thus part of the decision-making process about development trends. 

    In the future the High Voltage Box with bidirectional function can also make it possible to power a whole house from the High Voltage Battery during a blackout. This is an option because batteries in vehicles have a much bigger capacity than most of the batteries typically installed in private homes.

    Original – Vitesco Technologies

    Comments Off on Vitesco Technologies SiC-Based High Voltage Box Delivers Superb Efficiency
  • Cambridge GaN Devices Introduces New Reference Designs

    Cambridge GaN Devices Introduces New Reference Designs

    2 Min Read

    Cambridge GaN Devices (CGD) is addressing higher power industrial applications with its ICeGaN™ technology which has already proved itself rugged, reliable and easy-to-use in high volume consumer devices. At the APEC 2024, IEEE Applied Power Electronics Conference and Exposition, the company is introducing new reference designs and showing demos which address the broad and diverse industrial market.

    Andrea Bricconi | Chief Commercial Officer, CGD

    “We are acutely aware of the increasing power requirements of industrial applications, and the need for high efficiency. For example, as the use of Artificial Intelligence (AI) proliferates, the power demanded by the exponential growth in power demanded by datacentres is growing almost exponentially. Other applications, such as solar inverters, amplifiers, transport and smart mobility, process control and manufacturing are also interested in GaN and the feedback we have received is that they love the simplicity of our ‘Drive it Like a MOSFET’ approach.”

    At APEC, visitors to the booth are able to see the progress that CGD is making to support both emerging and existing markets for GaN technology..

    With a high power density of 23 W/in3, GGD’s 350 W PFC/LLC reference design has an average efficiency of 93%, and a no-load power consumption of 150 mW. The CrM Totem Pole PFC + Half-Bridge LLC PSU has been realised using CGD’s 650 V, 55 mΩ, H2 series ICeGaN technology, and delivers 20 V / 17.5 A output.

    The result of a partnership deal struck last year with Neways Electronics, a 3 kW photo-voltaic inverter is used to boost the DC solar voltage to a stable DC link voltage. With a maximum efficiency of 99.22% due to zero-current switching, it is a perfect example of how CGD’s GaN HEMT structure is simple for engineers to use, since it employs a standard silicon controller from Analog Devices Inc.

    ICeGaN has been employed by AGD Productions in its compact AGD DUET amplifier which is rated at 300W 4Ω. This is the first time the company has used a 100% GaN power transistor design for both the power stage and the amplifier.

    Finally, the GaNext project, a consortium of 13 partners from three nations has delivered compact 1 kW intelligent power modules featuring integrated drive, voltage control and protection circuits using CGD’s ICeGaN.

    Original – Cambridge GaN Devices

    Comments Off on Cambridge GaN Devices Introduces New Reference Designs
  • Qorvo® Delivers Four 1200V SiC Modules

    Qorvo® Delivers Four 1200V SiC Modules

    2 Min Read

    Qorvo® announced four 1200V silicon carbide (SiC) modules – two half-bridge and two full-bridge – in a compact E1B package with RDS(on) starting at 9.4mΩ. These highly efficient SiC modules are excellent solutions for electric vehicle (EV) charging stations, energy storage, industrial power supplies and solar power applications.

    “The modules in this new family can replace as many as four discrete SiC FETs, thus simplifying thermomechanical design as well as assembly. Our cascode technology also allows higher switching frequency operation, further reducing solution size by using smaller external components,” said Ramanan Natarajan, director of product line marketing for Qorvo’s SiC Power Products business.

    “For our customers, the high efficiency of these modules streamlines the power supply design process, so they can focus on the design, layout, assembly, characterization and qualification of one module as opposed to numerous discrete components.”

    Led by the 9.4mΩ UHB100SC12E1BC3N, these four SiC modules leverage Qorvo’s unique cascode configuration, which minimizes RDS(on) and switching losses to maximize efficiency, especially in soft-switching applications. Silver-sinter die attach reduces thermal resistance to as low as 0.23 °C/W; when combined with the stacked die construction found in the “SC” part numbers, power cycling performance is improved by 2X over comparable SiC power modules on the market.

    Together, these characteristics contribute to superior thermal performance and reliability with the ease of use and power density of a highly integrated SiC power module.

    The table below provides a snapshot of Qorvo’s new 1200V SiC module family:

    Part #DescriptionRDS(on) @25C (mΩ)
    UFB15C12E1BC3N1200V, 15A SiC full-bridge module70
    UFB25SC12E1BC3N1200V, 25A SiC full-bridge module35
    UHB50SC12E1BC3N1200V, 50A SiC half-bridge module19
    UHB100SC12E1BC3N1200V, 100A SiC half-bridge module9.4

    Qorvo’s suite of powerful design tools like its FET-Jet Calculator and QSPICE™ software aid in product selection and performance simulation. For more information about Qorvo’s advanced SiC solutions for industrial applications, please visit www.qorvo.com/go/sic.

    Original – Qorvo

    Comments Off on Qorvo® Delivers Four 1200V SiC Modules
  • Power Integrations Introduced InnoMux™-2 Family of Power-Supply ICs

    Power Integrations Introduced InnoMux™-2 Family of Power-Supply ICs

    2 Min Read

    Power Integrations announced the InnoMux™-2 family of single-stage, independently regulated multi-output offline power-supply ICs. InnoMux-2 ICs consolidate AC-DC and downstream DC-DC conversion stages into a single chip, providing up to three independently regulated outputs for use in white goods, industrial systems, displays and other applications requiring multiple voltages.

    Elimination of separate DC-DC stages slashes component count, reduces PCB footprint and increases efficiency by as much as 10 percentage points compared to traditional two-stage architectures. Efficiency is aided by the ICs’ 750 V PowiGaN™ gallium-nitride transistors, zero-voltage switching (without an active clamp) and synchronous rectification.  

    Roland Saint-Pierre, vice president of product development at Power Integrations said: “Most modern electronic systems rely on multiple internal voltages to operate various functions such as computing, communication and actuation function – typically heat, light, sound or motion of some kind. But losses in each conversion stage are compounded, degrading system performance and generating heat.

    The InnoMux-2 IC overcomes this challenge by providing up to three independently regulated voltage outputs or two voltage output and a constant current output from a single stage, achieving a compact and efficient power sub-system with low component count.”

    InnoMux-2 ICs deliver up to 90 watts of output power with accurate regulation of better than ±3 percent across the full input line, load, temperature and differential current step conditions. Total power system efficiency (AC to regulated low-voltage DC segment) is above 90 percent; the advanced InnoMux-2 controller also manages light-load power delivery, avoiding the need for pre-load resistors and reducing no-load consumption to less than 30 mW. This conserves power for necessary functionality in applications subject to the 300 mW allowance for standby usage under the European energy-using product (EuP) regulations.

    InnoMux-2 devices leverage Power Integrations’ thermally efficient InSOP™24 and InSOP™28 packages with PCB cooling, so no heatsink is required. Device options include dual- and three-output constant voltage (CV); optionally, one output may be dedicated to constant current (CC) drive, suitable for powering LEDs in displays or for high-speed charging of an internal battery. Typical applications include TVs, monitors, appliances, networking, home and building automation, LED emergency lighting and industrial power supplies.

    Original – Power Integrations

    Comments Off on Power Integrations Introduced InnoMux™-2 Family of Power-Supply ICs
  • Infineon Technologies Adds 750V G1 Discrete MOSFET to CoolSiC™ Family

    Infineon Technologies Adds 750V G1 Discrete MOSFET to CoolSiC™ Family

    2 Min Read

    Infineon Technologies AG introduced the 750V G1 discrete CoolSiC™ MOSFET to meet the increasing demand for higher efficiency and power density in industrial and automotive power applications. The product family includes both industrial-graded and automotive-graded SiC MOSFETs that are optimized for totem-pole PFC, T-type, LLC/CLLC, dual active bridge (DAB), HERIC, buck/boost, and phase-shifted full bridge (PSFB) topologies.

    The MOSFETs are ideal for use in both typical industrial applications, such as electric vehicle charging, industrial drives, solar and energy storage systems, solid state circuit breaker, UPS systems, servers/ datacenters, telecom, and in the automotive sector, such as onboard chargers (OBC), DC-DC converters, and many more.

    The CoolSiC MOSFET 750 V G1 technology features excellent RDS (on) x Q fr and superior  RDS (on) x Q oss Figure-of-Merits (FOMs), resulting in ultra-high efficiency in hard-switching and soft-switching topologies respectively. Its unique combination of high threshold voltage (V GS(th), Typ. of 4.3 V) with low Q GD/Q GS ratio ensures high robustness against parasitic turn-on and enables unipolar gate driving, leading to increased power density and low cost of the systems.

    All devices use Infineon’s proprietary die-attach technology which delivers outstanding thermal impedance for equivalent die sizes. The highly reliable gate oxide design combined with Infineon’s qualification standards delivers robust and long-term performance.

    With a granular portfolio ranging from 8 to 140 mΩ RDS (on) at 25°C, this new CoolSiC MOSFET 750 V G1 product family meets a wide range of needs. Its design ensures lower conduction and switching losses, boosting overall system efficiency.

    Its innovative packages minimize thermal resistance, facilitate improved heat dissipation, and optimize in-circuit power loop inductance, thereby resulting in high power density and reduced system costs. It’s important to note that this product family features the cutting-edge QDPAK top-side cooled package.

    Original – Infineon Technologies

    Comments Off on Infineon Technologies Adds 750V G1 Discrete MOSFET to CoolSiC™ Family
  • EPC Introduced 1 mOhm GaN FET

    EPC Introduced 1 mOhm GaN FET

    1 Min Read

    EPC introduced the 100 V, 1 mOhm EPC2361. This is the lowest on-resistance GaN FET on the market offering double the power density compared to EPC’s prior-generation products.

    The EPC2361 has a typical RDS(on) of just 1 mOhm in a thermally enhanced QFN package with exposed top and tiny, 3 mm x 5 mm, footprint. The maximum RDS(on) x Area of the EPC2361 is 15 mΩ*mm2 – over five times smaller than comparable 100 V silicon MOSFETs.

    With its ultra-low on-resistance, the EPC2361 enables higher power density and efficiency in power conversion systems, leading to reduced energy consumption and heat dissipation. This breakthrough is particularly significant for applications such as high-power PSU AC-DC synchronous rectification, high frequency DC-DC conversion for data centers, motor drives for eMobility, robotics, drones, and solar MPPTs. 

    “Our new 1 mΩ GaN FET continues to push the boundaries of what is possible with GaN technology, empowering our customers to create more efficient, compact, and reliable power electronics systems,” comments Alex Lidow, EPC CEO and co-founder.

    Original – Efficient Power Conversion

    Comments Off on EPC Introduced 1 mOhm GaN FET
  • Arrow Electronics and Infineon Technologies Deliver 30kW DC Fast Charger Reference Platform

    Arrow Electronics and Infineon Technologies Deliver 30kW DC Fast Charger Reference Platform

    2 Min Read

    Arrow Electronics, Inc. and its engineering services company, eInfochips, are working with Infineon Technologies AG to help eInfochips’ customers accelerate the development of electric vehicle (EV) chargers.

    Development of EV chargers, especially DC “fast chargers,” is becoming increasingly challenging to equipment manufacturers due to several factors, such as lack of prior experience, stringent functional safety and reliability requirements, and a fledgling support network. The collaboration between Arrow and Infineon aims to help innovators navigate these challenges while accelerating time-to-market.

    As part of the collaboration, Arrow’s High Power Center of Excellence has developed a 30kW DC fast charger reference platform. This includes Infineon’s 1200V CoolSiC™ Easy power modules and also hardware design, embedded firmware, bi-directional charging support and energy metering functionality.

    “Combining Arrow’s strength in components, engineering and design services with Infineon’s innovative products will help customers accelerate their design and speed to market in e-mobility applications,” said Murdoch Fitzgerald, vice president, global engineering and design services at Arrow. “Customers can rely on this collaboration to deliver innovative and leading edge DC faster chargers, accelerate and de-risk design cycles, and get access to a world-class support team enabling them to plan and manage their product roadmap and lifecycles.”

    “Infineon is on a drive towards decarbonization and digitalization with our ecosystem partners, and this collaboration with Arrow is a testament to this mission,” said Shri Joshi, vice president of Green Industrial Power, Infineon Technologies Americas. “The joint 30kW DC fast charger reference platform, which includes Infineon’s latest power modules and devices, will help our customers bring more fast chargers to market as the future moves to electrical vehicles. We look forward to this ongoing collaboration to support our customer base.”

    The first reference design from this collaboration, a production-grade 30kW DC fast charger reference development platform, is being demonstrated at Applied Power Electronics Conference, Feb. 25-29, in Long Beach, Calif.

    Original – Arrow Electronics

    Comments Off on Arrow Electronics and Infineon Technologies Deliver 30kW DC Fast Charger Reference Platform
  • Vishay Intertechnology Brings Industry-Leading SiC MOSFET Technology to APEC 2024

    Vishay Intertechnology Brings Industry-Leading SiC MOSFET Technology to APEC 2024

    3 Min Read

    Vishay Intertechnology, Inc. announced that at the Applied Power Electronics Conference and Exposition (APEC) 2024, the company is showcasing its broad portfolio of passive and semiconductor solutions that address the latest trends in power electronics — from energy harvesting, electric vehicle (EV) powertrains, and mass commercialization to efficient and effective power electronics for power tools and switching regulators that shorten the iterative design cycle.

    Taking center stage in booth 1607 will be Vishay’s newly released 1200 V MaxSiC™ series silicon carbide (SiC) MOSFETs, which deliver on-resistances of 40, 80 and 250 mΩ in standard packages for industrial applications, with custom products also available. In addition, Vishay will provide a roadmap for 650 V to 1700 V SiC MOSFETs with on-resistances ranging from 12 mΩ to 1 Ω.

    Vishay’s SiC platform is based on a proprietary MOSFET technology — enabled through the company’s recent acquisition of MaxPower Semiconductor, Inc. — which will address market demands in traction inverter, photovoltaic energy storage, on-board charger, and charging station applications. At the booth, Vishay’s experts will also be discussing upcoming planned releases of the MaxSiC platform, including AEC-Q101 Automotive Grade products.

    At APEC 2024, Vishay will also be offering a variety of product-focused demonstrations highlighting IHPT haptic actuators; the THJP ThermaWick® Thermal Jumper; the pulse performance of MELF, CRCW / CRCW-HP thick film, and MCS, MCU, and MCW thin film chip resistors; and the thermal capabilities of the PCAN and RCP high power thin and thick film resistors. In addition, application-focused demonstrations will include:

    • An 800 V SiC MOSFET heat pump with a 100 % Vishay BOM
    • A high voltage intelligent battery shunt for 400 V and 800 V batteries
    • A six-phase DC/DC converter for mild hybrid vehicles with 48 V boardnets that provides power to 12 V loads up to 3 kW with high efficiency to 97 %
    • A semiconductor-based, resettable eFuse for 800 V electric vehicle systems

    Additional Vishay passive components on display at APEC 2024 will include the IHDM series of high current, edge-wound through hole inductors with continuous operation to +180 °C; hybrid planar and integrated transformers; wireless charging coils; NTC thermistors and PTC thermistors, including the PTCEL series capable of handling energy absorption up to 240 J; high power wirewound, thin film, and thick film resistors, including the anti-surge RCS with power to 0.5 W in the 0805 case size; high voltage thick film resistors and dividers; high voltage aluminum, ceramic, and power electronic capacitors (PEC); high energy tantalum capacitors; and robust metallized polypropylene film capacitors, including the MKP1848e DC-Link capacitor with high temperature operation to +125 °C.

    Highlighted Vishay semiconductor solutions will consist of the SiC967 high voltage synchronous buck regulator with integrated power MOSFETs and inductors; 400 V, 600 V, and 1200 V standard rectifiers in SlimDPAK 2L and SMPD 2L packages with high creepage distance; 650 V and 1200 V SiC Schottky diodes up to 12 A in eSMP® series and power packages for AC/DC power factor correction (PFC) and ultra high frequency output rectification; and transient voltage suppressors (TVS).

    Original – Vishay Intertechnology

    Comments Off on Vishay Intertechnology Brings Industry-Leading SiC MOSFET Technology to APEC 2024
  • CISSOID Released New Series of SiC Inverter Control Modules

    CISSOID Released New Series of SiC Inverter Control Modules

    2 Min Read

    At the Applied Power Electronics Conference (APEC), CISSOID released its new series of SiC Inverter Control Modules (ICMs) dedicated to the E-mobility market. These software-powered SiC Inverter Control Modules are designed to help engineers create functionally safe, robust and modular E-motor drives while dramatically shortening time-to-market.

    The new CXT-ICM3SA series offers optimal hardware and software integration of CISSOID’s existing line of 3-phase 1200V/340A-550A SiC MOSFET Intelligent Power Modules (IPMs) with an OLEA® T222 Field Programmable Control Unit (FPCU) control board and OLEA® APP INVERTER application software, supplied in partnership with Silicon Mobility. Depending on the selected ICM product, this modular core engine is capable of powering and controlling high voltage SiC traction inverters with battery voltages up to 850V, at output power exceeding 350kW, and with peak efficiency above 99%.
      
    This unique integration facilitates the rapid development of SiC inverters by solving head-scratching EMC issues often generated due to fast-switching SiC transistors, by supporting different modulation schemes, e.g. SVPWM or DPWM, combined with dead time compensation, and by offering advanced motor control algorithms, including Field Oriented Control (FOC) and Flux Weakening management.
     
    CISSOID further improves time-to-market by providing a complete SiC inverter reference design allowing motor bench testing of the ICM together with key peripheral elements such as current sensors, a high-performance DC-Link capacitor and EMI filter. Both the ICM and the reference design can be obtained from CISSOID, together with the motor control software and on-site technical support.

    Delivering leadership performance, the ICM supports the drive of high-speed motors, with no compromise on efficiency, thanks to the combination of CISSOID’s low losses SiC power module with the ultra-fast real-time FPCU, enabling high switching frequencies up to 50kHz. Furthermore, this application-specific processor dedicated to e-motor control, with onboard programmable hardware, accelerates the response time to critical events, off-loading the processor cores and enhancing functional safety. Both the FPCU and the control software are ISO-26262 ASIL C/D certified and AUTOSAR 4.3 compliant.

    Original – CISSOID

    Comments Off on CISSOID Released New Series of SiC Inverter Control Modules
  • Navitas Semiconductor Powers Samsung’s 25 W Super-Fast Charging for AI-enhanced Galaxy S24

    Navitas Semiconductor Powers Samsung’s 25 W Super-Fast Charging for AI-enhanced Galaxy S24

    2 Min Read

    Navitas Semiconductor announced that its GaNFast™ power ICs drive Samsung’s 25 W “Super-Fast Charging” (SFC) for the new, AI-enhanced Galaxy S24 smartphone.

    Flagship hardware specifications include a 2340 x 1080 (FHD+) dynamic AMOLED 2X, and 120 Hz screen, plus the Galaxy S24 delivers innovative and practical AI features to help transform the way users communicate, create and discover the world. Galaxy AI features like Live Translate, Chat Assist and new “Circle to Search” with Google, to improve nearly every experience that S24 users can enjoy.

    The 25 W GaNFast unit delivers 50% charge to the high-capacity 4000 mAh battery in only 30 minutes, while the USB PD 3.0 (Type-C) specification makes it compatible with other Samsung products including Galaxy Buds2 audio, Galaxy Z Fold5, Galaxy Flip and Galaxy A23.

    Designed with sustainability in mind, the 25 W power adapter features a 75% reduction in power consumption sleep mode. Navitas’ GaNFast technology is deployed in a high-frequency, quasi-resonant (HFQR) topology running at 150 kHz – 3x faster than standard silicon designs – and delivers a 30% size shrink vs. conventional charger designs.

    “We are excited to extend our relationship with Samsung as they continue to develop groundbreaking mobile phone technology,” said David Carroll, Sr. VP Worldwide Sales for Navitas. “Deploying GaNFast ICs has allowed Samsung to create an ultra-compact, lightweight and efficient 25W adapter that can rapidly re-charge the new Galaxy S24 and a variety of other phones and accessories in the Samsung range.”

    Original – Navitas Semiconductor

    Comments Off on Navitas Semiconductor Powers Samsung’s 25 W Super-Fast Charging for AI-enhanced Galaxy S24