-
Navitas Semiconductor announced participation at the International Conference on Silicon Carbide and Related Materials (ICSCRM) 2023, to be held in Sorrento, Italy.
The ICSCRM conference fosters collaboration and knowledge sharing among the brightest minds in the field. The conference has a rich history dating back to its inaugural meeting in 1987, evolving into a premier global forum for in-depth technical discussions on all aspects of SiC and related materials.
GeneSiC™ power devices, optimized for high-power, high-voltage, and high-reliability SiC applications, address critical markets including electric vehicles, solar energy, energy storage, industrial applications, data centers, and consumer electronics. With an unmatched voltage range spanning from 650 V to 6.5 kV, GeneSiC MOSFETs and Schottky MPS™ diodes have been at the forefront of SiC technology advancement, offering performance and efficiency that pave the way for a more electrified and sustainable future.
Navitas Semiconductor will present two paper sessions at ICSCRM 2023:
- “New Generation SiC MPS Diodes with Low Schottky Barrier Height”
- “650 V SiC Power MOSFETs with Statistically Tight VTH Control and RDS(ON) of 1.92 mΩ-cm²”
Additionally, Navitas’ SVP of SiC Technology & Operations, Dr. Sid Sundaresan, will be chairing the session on Thursday, September 21st. The session, titled “Devices 4: Short circuit, avalanche and reliability,” will focus on crucial topics in the field of SiC technology.
“Navitas’ presence at ICSCRM 2023 is a testament to the company’s unparalleled expertise in SiC technology and its commitment to driving innovation in the industry,” said Dr. Ranbir Singh, Navitas EVP for the GeneSiC business line. “As a pioneer in the field, we continue to extend the boundaries of SiC technology, revolutionizing power semiconductors with cutting-edge GeneSiC™ technology.”
Original – Navitas Semiconductor
-
LATEST NEWS / SiC / WBG3 Min Read
Korea Electrotechnology Research Institute (KERI) succeeded in transferring the ‘Ion Implantation and its Evaluation Technology for the SiC (silicon carbide) Power Semiconductor’ to a Hungarian company.
Power semiconductors are key components in electricity and electronics, acting as the muscles of the human body by regulating the direction of current and controlling power conversion. There are many different materials for power semiconductors. Among them, SiC is receiving the most attention due to its excellent material properties, including high durability and excellent power efficiency. When SiC power semiconductors are incorporated into electric vehicles, they cut down the power consumption of the battery and reduce the body weight and volume of the vehicle, resulting in energy efficiency improvements of up to 10%
While SiC power semiconductors have many advantages, the manufacturing process is also very challenging. Previously, a method was applied to create a device by forming an epi layer (single-crystal semiconductor thin-film) on a highly conductive wafer and flowing current through that area. However, during this process, the surface of the epi layer becomes rough and the speed of electron transfer decreases. The price of the epi wafer itself is also high, which is a major obstacle to mass production.
To solve this problem, KERI used a method of implanting ions into a semi-insulated SiC wafer without an epi layer. Ion implantation, which makes a wafer conductive, is the work that breathes life into a semiconductor.
SiC materials are hard and require very high energy ion implantation followed by high temperature heat treatment to activate the ions, making it a difficult technology to implement. However, KERI has succeeded in securing the relevant technologies based on its 10 years of experience in operating ion implantation equipment dedicated to SiC.
“Ion implantation technology can significantly reduce process costs by increasing current flow in semiconductor devices and replacing expensive epi wafers,” said Dr. Kim, Hyoung Woo, Director, Advanced Semiconductor Research Center, KERI. He continued, “This is a technology that increases the price competitiveness of high-performance SiC power semiconductors and contributes greatly to mass production.”
This technology was recently transferred to ‘SEMILAB ZRT (CEO: Tibor Pavelka)’, a semiconductor metrology equipment company located in Budapest, Hungary. With a 30-year history, SEMILAB has manufacturing plants in Hungary and the United States. SEMILAB owns patents for medium-sized precision measurement equipment and material characterization equipment, and has the world’s leading technology in semiconductor electrical parameter evaluation system.
They predict that through this technology transfer, they will be able to standardize high-quality SiC. SEMILAB plans to use KERI technology to develop specialized equipment to evaluate the ion implantation process of SiC power semiconductor.
Park Su-yong, the president of SEMILAB Korea, said, “Through the development of specialized equipment, we will be able to progress in-line monitoring of implant processes on SiC wafers for immediate, accurate, and low-cost production control of implant systems and in-line monitoring for pre-anneal implant.” He added, “This will be a great foundation for stably securing a high-quality ion implantation mass production process with excellent uniformity and reproducibility.”
KERI is a government-funded research institute under the NST (National Research Council of Science & Technology) of the Ministry of Science and ICT. It has a total of more than 120 intellectual property rights in the field of power semiconductor research. As of the last 10 years, power semiconductor division of KERI has achieved more than KRW 3 billion in technology transfers, the highest level in South Korea.
Original – KERI