WBG Tag Archive

  • University of Arkansas Began Construction of the national Multi-User Silicon Carbide Research and Fabrication Facility

    University of Arkansas Began Construction of the National Multi-User Silicon Carbide Research and Fabrication Facility

    4 Min Read

    The University of Arkansas has taken the next step to becoming a national leader in the United States’ semiconductor economy. Semiconductors, such as silicon, are essential materials in most electronic devices and advance performance in fields such as healthcare, national defense, computing and transportation.

    This August, the university began construction on the national Multi-User Silicon Carbide Research and Fabrication Facility, or MUSiC. Capable of silicon or silicon carbide chip fabrication, this new semiconductor research and fabrication facility will enable the government, businesses of all sizes, and universities to prototype in silicon carbide, introducing a capability that does not presently exist in the U.S.

    This unique facility will offer low-volume prototyping for high-volume manufacturing, bridging the gap between traditional university research and the needs of private industry. This will accelerate both workforce development and technological advancement in semiconductors by providing a single location where chips can be go from developmental research to prototyping, testing and fabrication. 

    Alan Mantooth, Distinguished Professor of electrical engineering at the U of A, is principal investigator for MUSiC. He stated that with MUSiC, the university could “begin training the next generation at a variety of degree levels to provide well-trained and educated talent for onshoring semiconductor manufacturing that domestic suppliers offshored in the late 90s and early 2000s. Our training will be equally applicable to silicon and silicon carbide and other materials.”

    Construction coincides with the CHIPS America Summit on Aug. 17, an invitation-only event for research, industry and governmental leaders from across the nation to discuss CHIPS and Science Act semiconductor-related opportunities and the ways in which the U of A and the State of Arkansas are uniquely positioned to lead.

    The summit will feature Director of External and Government Affairs for the U.S Department of Commerce’s CHIPS Program Office, Adrienne Elrod. U.S. Representative Steve Womack and Arkansas Secretary of Commerce Hugh McDonald will also participate.

    In addition to the MUSiC facility, the U of A is also home to the first Energy Frontier Research Center in Arkansas, as part of a team of researchers who received $10.35 million from the U.S. Department of Energy. The Center for Manipulation of Atomic Ordering for Manufacturing Semiconductors is dedicated to investigating the formation of atomic orders in semiconductor alloys and their effects on various physical properties. This research program will enable reliable, cost-effective and transformative manufacturing of semiconductors. 

    Researchers at the U of A previously established the MonArk NSF Quantum Foundry to accelerate the development of quantum materials and devices. In collaboration with Montana State University, and other member universities, the foundry supports the study of 2-D materials — consisting of a single layer of bonded atoms — by aiding researchers and facilitating the exchange of ideas across academia and industry. The project leads the fabrication of 2-D material quantum devices and their characterization, using low-temperature electronic transport and optoelectronic techniques.

    The U of A’s existing and expanding research foundation means it’s uniquely positioned to take advantage of the recent CHIPS (Creating Helpful Incentives to Produce Semiconductors) and Science Act, which is providing approximately $280 billion in funding to stimulate domestic research and manufacturing of semiconductors.

    As a result of manufacturing and production shortages of essential computer chips during the pandemic, which are overwhelmingly manufactured overseas, the federal government has prioritized the onshoring of this critical technology.

    About the University of Arkansas: As Arkansas’ flagship institution, the U of A provides an internationally competitive education in more than 200 academic programs. Founded in 1871, the U of A contributes more than $2.2 billion to Arkansas’ economy through the teaching of new knowledge and skills, entrepreneurship and job development, discovery through research and creative activity while also providing training for professional disciplines.

    The Carnegie Foundation classifies the U of A among the few U.S. colleges and universities with the highest level of research activity. U.S. News & World Report ranks the U of A among the top public universities in the nation. See how the U of A works to build a better world at Arkansas Research and Economic Development News.

    The national Multi-User Silicon Carbide Research and Fabrication Facility, or MUSiC, will provide opportunities for the government and business of all sizes, and universities to prototype in silicon carbide, introducting a capability that does not currently exist in the U.S.

    Original – University of Arkansas

    Comments Off on University of Arkansas Began Construction of the National Multi-User Silicon Carbide Research and Fabrication Facility
  • Transphorm Demonstrated up to 5 Microsecond Short Circuit Withstand Time

    Transphorm Demonstrated up to 5 Microsecond Short Circuit Withstand Time

    3 Min Read

    Transphorm, Inc. announced it has demonstrated up to 5 microsecond short circuit withstand time (SCWT) on a GaN power transistor with a patented technology. The achievement is the first of its kind on record, marking an important milestone for the industry as a whole. It proves Transphorm GaN’s ability to meet the required short circuit capabilities of rugged power inverters such as servo motors, industrial motors, and automotive powertrains served traditionally by silicon IGBTs or silicon carbide (SiC) MOSFETs— an over $3 billion GaN TAM over the next 5 years.

    The demonstration was developed with support from Yaskawa Electric Corporation, a long-term strategic partner of Transphorm’s and a global leader in low and medium voltage drives, servo systems, machine controllers, and industrial robots. This makes GaN a highly attractive power conversion technology for servo systems, as it allows for higher efficiency and reduced size compared to incumbent solutions.

    To do that, GaN must pass stringent robustness tests—of which, short-circuit survivability is the most challenging. In case of short-circuit faults, the device must survive extreme conditions with both high current and high voltage. The system can take up to a few microseconds to detect the fault and shut down the operations. During this time, the device must withstand the fault on its own.

    “If a power semiconductor device cannot survive short-circuit events, the system itself may fail. There was a strong perception that GaN power transistors could not meet the short circuit requirements needed for heavy-duty power applications such as ours,” said Motoshige Maeda, Department Manager of Fundamental R&D Management Department, Corporate Technology Division, Yaskawa. “Having worked with Transphorm for many years, we believed that perception to be unfounded and have been proven right today. We’re excited about what their team has accomplished and look forward to demonstrating how this new GaN feature can benefit our designs.”

    The short-circuit technology has been demonstrated on a newly designed 15 mΩ 650 V GaN device. Notably, that device reaches a peak efficiency of 99.2% and a maximum power of 12 kW in hard-switching conditions at 50 kHz. The device demonstrated not only performance, but also reliability, passing high-temperature high-voltage stress requirements.

    “Standard GaN devices can withstand short-circuit for only a few hundredths of nanoseconds, which is too short for fault detection and safe shut-down. However, with our cascode architecture and key patented technology, we were able to demonstrate short-circuit withstand time up to 5 microseconds with no additional external components, thus retaining low cost and high performance,” said Umesh Mishra, CTO and Co-Founder, Transphorm.

    “We understand the demands of high-power, high-performance inverter systems. We have a long history of strong innovation, and we’re proud to say that experience helped us bring GaN to the next level. This is yet another validation of Transphorm’s global leadership in high voltage GaN robustness and reliability and will be a gamechanger for GaN in motor drives and other high-power systems.”

    The full description explaining the SCWT achievement, the demonstration analysis, and more is expected to be presented at a major power electronics conference next year.

    Original – Transphorm

    Comments Off on Transphorm Demonstrated up to 5 Microsecond Short Circuit Withstand Time
  • Navitas “Titanium Plus” Server Power Platform Drives AI Revolution

    Navitas “Titanium Plus” Server Power Platform Drives AI Revolution

    3 Min Read

    Navitas Semiconductor announced that its CRPS185 3,200 W “Titanium Plus” server reference design not only surpasses the stringent 80Plus Titanium efficiency requirements, but also effectively satisfies the increasing power demands of AI data center power.

    The rapid development and deployment of artificial intelligence (AI) including OpenAI’s ChatGPT, Microsoft’s Bing with AI, and Google’s Bard, has penetrated all aspects of people’s lives. New power-hungry AI processors like NVIDIA’s DGX GH200 ‘Grace Hopper’ demand up to 1,600 W each, are driving power-per-rack specifications from 30-40 kW up to 100 kW per cabinet. Meanwhile, with the global focus on energy conservation and emission reduction, as well as the latest European regulations, server power supplies must exceed the 80Plus ‘Titanium’ efficiency specification.

    Navitas’ reference designs dramatically accelerate customer developments, minimize time-to-market, and set new industry benchmarks in energy efficiency, power density and system cost, enabled by GaNFast power ICs. These system platforms include complete design collateral with fully-tested hardware, embedded software, schematics, bill-of-materials, layout, simulation and hardware test results.

    In this case, the ‘Common Redundant Power Supply’ (CRPS) form-factor specification was defined by the hyperscale Open Compute Project, including Facebook, Intel, Google, Microsoft, and Dell. Now, Navitas’ CRPS185 platform delivers a full 3,200 W of power in only 1U (40 mm) x 73.5mm x 185 mm (544 cc), achieving 5.9 W/cc, or almost 100 W/in3 power density. This is a 40% size reduction vs, the equivalent legacy silicon approach and easily exceeds the Titanium efficiency standard, reaching over 96.5% at 30% load, and over 96% stretching from 20% to 60% load, creating a ‘Titanium Plus’ benchmark, critical for data center operating models.

    The CRPS185 uses the latest circuit designs including an interleaved CCM totem-pole PFC with full-bridge LLC. The critical components are Navitas’ new 650V GaNFast power ICs, with robust, high-speed integrated GaN drive to address the sensitivity and fragility issues associated with discrete GaN chips. Additionally, GaNFast power ICs offer extremely low switching losses, with a transient-voltage capability up to 800 V, and other high-speed advantages such as low gate charge (Qg), output capacitance (COSS) and no reverse-recovery loss (Qrr). As high-speed switching reduces the size, weight and cost of passive components in a power supply, Navitas estimates that GaNFast power ICs save 5% of the LLC-stage system material cost, plus $64 per power supply in electricity over 3 years.

    Compared to traditional ‘Titanium’ solutions, the Navitas CRPS185 3,200 W ‘Titanium Plus’ design running at a typical 30% load can reduce electricity consumption by 757 kWh, and decrease carbon dioxide emissions by 755 kg over 3 years. This reduction is equivalent to saving 303 kg of coal. Not only does it help data center clients achieve cost savings and efficiency improvements, but it also contributes to the environmental goals of energy conservation and emission reduction.

    In addition to data center servers, this solution can also be widely used in applications such as switch/router power supplies, communications, and other computing applications.

    “The popularity of AI applications like ChatGPT is just the beginning. As data center rack power increases by 2x-3x, up to 100 kW, delivering more power in a smaller space is key,” said Charles Zha, VP and GM of Navitas China. “We invite power designers and system architects to partner with Navitas and discover how a complete roadmap of high efficiency, high power density designs can cost-effectively, and sustainably accelerate their AI server upgrades.”

    Original – Navitas Semiconductor

    Comments Off on Navitas “Titanium Plus” Server Power Platform Drives AI Revolution
  • Infineon to Build World’s Largest 200-millimeter SiC Power Fab in Malaysia

    Infineon to Build World’s Largest 200-millimeter SiC Power Fab in Malaysia

    4 Min Read

    The decarbonization trend will result in strong market growth for power semiconductors, in particular those based on wide bandgap materials. As a leader in Power Systems, Infineon Technologies AG is now taking a further, decisive step to shape this market: By significantly expanding its Kulim fab – over and above the original investment announced in February 2022 – Infineon will build the world’s largest 200-millimeter SiC (silicon carbide) Power Fab. The planned expansion is backed by customer commitments covering about five billion euros of new design-wins in automotive and industrial applications as well as about one billion euros in pre-payments.

    Over the next five years Infineon will additionally invest up to five billion euros in Kulim during a second construction phase for Module Three. The investment will lead to an annual SiC revenue potential of about seven billion euros by the end of the decade, together with the planned 200-millimeter SiC conversion of Villach and Kulim. This highly competitive manufacturing base will support Infineon’s SiC market share target of 30% towards the end of the decade. Infineon is confident that the company’s SiC revenue in the fiscal year 2025 will come in ahead of the target of one billion euros.

    “The market for silicon carbide shows accelerating growth, not only in automotive but also in a broad range of industrial applications such as solar, energy storage and high-power EV charging. With the Kulim expansion, we will secure our leadership position in this market,” said Jochen Hanebeck, CEO of Infineon. “With the industry’s leading scale and a unique cost position, we are leveraging our competitive position of best-in-class SiC trench technology, the broadest package portfolio and unrivaled application understanding. These factors are the areas of differentiation and success in the industry.”

    Infineon has been awarded new design wins of about five billion euros along with about one billion euros in prepayments from existing and new customers: In the automotive sector this includes six OEMs, three of them from China. Among the customers are Ford, SAIC and Chery. In the area of renewable energies customers include SolarEdge and three leading Chinese photovoltaic and energy storage systems companies.

    In addition, Infineon and Schneider Electric agreed on a capacity reservation including prepayments for power products based on silicon and silicon carbide. Infineon and the respective customers will provide more details in separate announcements in the near future. The prepayments will contribute positively to Infineon’s cash flow in the coming years and shall be fully repaid in connection with the agreed sales volumes by 2030 at the latest.

    The Right Honourable Dato’ Seri Anwar bin Ibrahim, Prime Minister of Malaysia, expressed his appreciation for Infineon’s commitment to creating a significant wide bandgap hub in the country. “Malaysia is putting in maximum efforts to meet its national target to decarbonize its economy and achieve net zero by 2050. Malaysia’s continued appeal as a preferred investment destination comes with a well-established landscape for developing innovative and sustainable technologies. In this vein, Infineon’s vision on green technology and sustainability puts it right at home in Malaysia.

    Infineon and other well-established German corporations’ continued faith in Malaysia is a vote of confidence in Malaysia’s new economic growth agenda premised on inclusivity and sustainability, enabled by strong policies on knowledge transfer, quality investments, business enablement and socio-economic well-being based on equitable sharing of the nation’s wealth.”

    The Minister of Investment, Trade and Industry (MITI), His Hon. Tengku Datuk Seri Utama Zafrul Aziz lauded Infineon’s expansion and said, “Infineon’s expansion of their world-class silicon carbide facility in Kulim marks a significant milestone in Malaysia’s pursuit of developing advanced manufacturing capabilities, creating high-skilled employment opportunities and positioning the country at the forefront of enabling green technologies, which are crucial to achieving our global sustainable development goals.

    The innovative power semiconductor technologies manufactured in the SiC Power Fab will also bolster Malaysia’s position as a key player in the world’s semiconductor ecosystem, with a growing role specifically in the sustainable technology supply chain. I am heartened by Infineon’s sharing of Malaysia’s commitment to address the impact of climate change and I look forward to our long-term partnership for the further development of Malaysia’s green technologies ecosystem.”

    Sustainability is a key element in the planning, construction and operation of the fab. The building is designed in a way that allows Infineon to make responsible use of resources such as electricity and water.

    Original – Infineon Technologies

    Comments Off on Infineon to Build World’s Largest 200-millimeter SiC Power Fab in Malaysia
  • Leapers Semiconductor to Expand its SiC Power Modules Portfolio for ESS and Solar Markets

    Leapers Semiconductor to Expand its SiC Power Modules Portfolio for ESS and Solar Markets

    2 Min Read

    SiC power devices are changing and reshaping many industries today, providing numerous benefits over fundamental silicon-based semiconductors. One of the key advantages is a dramatically reduced power losses with increased efficiency achieved through silicon carbide exceptional material properties. SiC power semiconductors can operate at higher frequencies and temperatures delivering higher power densities and reduced cooling requirements. One of the industries benefiting much from the use of SiC power devices is the energy storage.

    Adopting silicon carbide technology, energy storage systems can deliver great energy saving and much better overall system performance.

    Reliability is one of the major requirements for any power electronics system, and ESS is no exception. That is why many ESS companies today choose SiC technology over Si. Silicon carbide power devices provide increased robustness and resistance when it comes to operating in extreme conditions. SiC temperature robustness allows to eliminate the risk of the system overheating – one of the major reasons for failure.

    Leading the development process of SiC power devices for a variety of emerging applications including vehicle electrification, photovoltaics, and, of course, battery energy storage systems, Leapers Semiconductor is expanding its portfolio of the hybrid modules with the 3-level power module to provide increased reliability for the ESS, solar, and the other 3-level applications.

    The all new DFH10AL12EZC1 power module integrates 1200V SiC MOSFET chips and 1200V IGBT chips in E2 package designed to correspond to high requirements set by the above-mentioned applications.

    Leapers Semiconductor DFH10AL12EZC1 hybrid power module features:

    • Blocking voltage:1200V
    • Rds(on): 9.5mΩ (VGS =15V)/8.3mΩ (VGS =18V)
    • Low Switching Losses
    • High current density
    • Press FIT Contact Technology
    • 175°C maximum junction temperature
    • Thermistor inside

    DFH10AL12EZC1 hybrid power modules guarantee the enhanced efficiency, improved power conversion, and increased overall reliability and durability with reduced system size.

    The other applications that will benefit from DFH10AL12EZC1 include:

    • Solar inverter Systems
    • Three-level Systems
    • Energy Storage Systems
    • High Frequency Switching Systems

    Original – Leapers Semiconductor

    Comments Off on Leapers Semiconductor to Expand its SiC Power Modules Portfolio for ESS and Solar Markets
  • WeEn Semiconductor's First Global Module Plant Commences Operations in Shanghai

    WeEn Semiconductor’s First Global Module Plant Commences Operations in Shanghai

    4 Min Read

    The opening ceremony of WeEnwin Jinshan Module Plant was held in the Shanghai Jinshan High-tech Industrial Development Zone. The ceremony marked the official commencement of WeEn’s world-first module plant, intended to produce various types of power module products utilized in consumer electronics, communications, new energy, and automotive applications. The products connect customers and the ecosystems, actively fostering the high-quality development of the industry.

    Markus Mosen, WeEn Semiconductors Co., Ltd. CEO; Chen Song, COO; Tang Ziming, CFO; Wu Rui, CHRO; Peng Xijun, general manager of Shanghai New Jinshan Industrial Investment & Development Co., Ltd; Zhao Fei, deputy director of the Jinshan District Development and Reform Commission; Cao Qin, deputy director of the Jinshan District Investment Promotion Office; other relevant department heads of the New Jinshan Development Company; WeEn boards Zhang Xinyu, Chang Liang, and Zhu Fenglin; together with representatives from WeEn’s global partners, numerous customers, vendors, approximately 200 guests attended the event to personally witness this historic step in WeEn’s new journey.

    Located in the Shanghai Bay Area High-tech Industrial and Development Zone, WeEn Jinshan Module Plant covers an area of 11,000 square meters. The construction of the plant began in August 2022. Eight months later in April 2023, the building quality and fire inspection compliance tests were successfully completed.

    WeEn Semiconductors Co., Ltd. has invested approximately RMB 200 million in the wholly-owned new Jinshan Module Plant, which has introduced over a hundred of the industry’s most advanced power module production and testing equipment to meet the market’s mainstream demand for various types of module products.

    It is worth underscoring that the newly established WeEnwin Module Plant has simultaneously set up an advanced packaging R&D center to develop and mass produce cutting-edge packaging technologies while researching the applicability of new materials.

    To optimize efficiency and reliability, the fully automated module production line is equipped with top-notch processing capabilities, including lead-free chip bonding/silver sintering bonding, lead-free soldering/ultrasonic soldering of terminals, aluminum wire bonding, and copper tab connections. Currently, WeEnwin module plant. has obtained ISO9001 and IATF16949 certifications and undergone VDA6.3 process audits, evidence of the company’s robust system that guarantees top-quality products.

    Peng Xijun, general manager of Shanghai New Jinshan Industrial Investment & Development Co., Ltd, warmly congratulated WeEnwin for the opening, noting that the event was a testimony of the concerted efforts of all parties. He further stated that the collective endeavors have significant importance in elevating the power semiconductor industry’s development level and accelerating the concentration of the optoelectronic chip industry in the high-tech industrial and development zone.

    In addition, he expressed his wish for the high-tech zone, as it embarks on its new era journey, to continue harnessing resources and efforts and attracting policies aimed at strengthening the innovation chain, extending the industrial chain, and improving the ecosystem.

    Meanwhile, Markus Mosen, WeEn Semiconductors Co., Ltd. CEO stated, “Given the favorable winds, this is the perfect time to set sail.” WeEn’s investment in the world’s first module factory has successfully transitioned from planning to operation according to schedule. Therefore, we remain grateful for the strong support from the Jinshan District People’s Government, Shanghai Bay Area High-tech Industrial Development Zone, and FITA Tech.

    There is no doubt that without the collective efforts of our partners and team, this accomplishment would not have been possible. At WeEnwin, we will seize the opportunities of the era, leverage our product and technological strengths, and provide reliable and efficient power semiconductor devices to our customers and partners. As we inject new impetus into pragmatic cooperation, we remain confident in our ability to propel the ship of power device development toward a new journey.”

    The operation of the WeEnwin Jinshan Module plant will enhance the efficiency of WeEn Semiconductors Co., Ltd.’s entire industry chain layout and services. In addition to producing the most advanced SCR / FRD / IGBT / SIC modules, the factory will significantly improve the experience of customers and partners by offering innovative modules and packaging services for the automotive and renewable energy markets. It is projected that the first batch of products from the new Jinshan Module Factory for Chinese and overseas customers will be shipped in the fourth quarter of 2023.

    Original – WeEn Semiconductors

    Comments Off on WeEn Semiconductor’s First Global Module Plant Commences Operations in Shanghai
  • GaN Systems and ACEpower Partner to Propel GaN Adoption in Chinese EV Market

    GaN Systems and ACEpower Partner to Propel GaN Adoption in Chinese EV Market

    3 Min Read

    GaN Systems has partnered with ACEpower to expedite the widespread adoption of GaN technology in electric vehicles. By harnessing GaN Systems’ cutting-edge power semiconductors, extensive expertise in EV power electronics, and ACEpower’s exceptional track record in high-power system design and high-volume manufacturing capabilities, this partnership will accelerate the GaN-based electric vehicle power market in China.

    GaN power semiconductors play a pivotal role in realizing the compact size, lightweight, and high efficiency demanded by the next generation of high-performance electric vehicles. By harnessing GaN Systems’ automotive-grade, high-performance GaN power transistors alongside ACEpower’s deep expertise in the power electronics industry, the companies are combining their distinctive capabilities to unlock the full potential of GaN performance advantages.

    In addition to other areas, the partnership will focus on topology optimization and advanced integrated power modules, and high-frequency magnetics design to enhance crucial electric vehicle efficiency and power density significantly.

    “We are delighted to announce our partnership with GaN Systems to accelerate GaN adoption in electric vehicles,” said Albert Wang, CEO of ACEpower. “Our longstanding relationship with GaN Systems, coupled with their unrivaled expertise in high reliability, automotive-qualified GaN semiconductors—a vital component for electric vehicles—brings great business opportunities in the fast growth Chinese EV market. Together, we are committed to driving innovation that will revolutionize electric vehicles, particularly in efficiency and power density, delivering substantial benefits to the industry.”

    This combination tackles fundamental challenges related to traditionally larger, heavier, inefficient, and costlier power systems based on legacy silicon power transistors. GaN power transistors enable higher efficiency and power density at a faster switching speed for onboard chargers, DC/DC converters, and traction inverters. These advancements translate into faster charging, extended driving range, and reduced overall system costs.

    “Today’s announcement marks a significant leap in our cooperative efforts with ACEpower to drive GaN adoption in the Chinese electric vehicle market,” said Jim Witham, CEO of GaN Systems. “This collaboration paves the way for disruptive and game-changing advancements in next-generation electric vehicles. Building upon our strong industry relationships with key players such as BMW, Toyota, and Vitesco, GaN Systems and ACEpower are poised to make a substantial impact in accelerating GaN adoption across the electric vehicle platform.”

    GaN Systems and ACEpower’s shared vision extends to capturing substantial market value in emerging sectors such as data centers and electric vehicles. Future initiatives encompass the joint development of high-power density GaN-powered OBCs rated at 6.6kW and 11kW for electric vehicles, solidifying their commitment to driving innovation and advancing the power industry.

    Original – GaN Systems

    Comments Off on GaN Systems and ACEpower Partner to Propel GaN Adoption in Chinese EV Market
  • Mitsubishi Electric Buys Stake in Novel Crystal Technology to Accelerate Development of Gallium-oxide Power Semiconductors

    Mitsubishi Electric Buys Stake in Novel Crystal Technology to Accelerate Development of Gallium-oxide Power Semiconductors

    1 Min Read

    Mitsubishi Electric Corporation announced that it has taken an equity position in Novel Crystal Technology, Inc., a Japanese company that develops and sells gallium-oxide wafers, a promising candidate for use in superior energy-saving power semiconductors that Mitsubishi Electric intends to develop at an accelerated pace in support of global decarbonization.

    Novel Crystal Technology, one of the world’s first companies to develop, manufacture and sell gallium-oxide wafers for power semiconductors, and now a leading producer of these products, has manufacturing technology that Mitsubishi Electric will use in its production of gallium-oxide power semiconductors.

    Mitsubishi Electric has been contributing to energy savings in power-electronic products by producing semiconductors made of silicon and silicon carbide (SiC). Recent advances have been achieved with SiC and gallium-nitride wafers, but gallium-oxide wafers are expected to help achieve even higher breakdown voltages and lower power dissipation.

    Mitsubishi Electric now expects to accelerate its development of superior energy-saving gallium-oxide power semiconductors by combining its own expertise in the design and manufacture of low-energy-loss, highreliability power semiconductors with Novel Crystal Technology’s expertise in the production of gallium-oxide wafers.

    Original – Mitsubishi Electric

    Comments Off on Mitsubishi Electric Buys Stake in Novel Crystal Technology to Accelerate Development of Gallium-oxide Power Semiconductors
  • Infineon and SolarEdge Sign Multi-Year Supplier Capacity Reservation Agreement

    Infineon and SolarEdge Sign Multi-Year Supplier Capacity Reservation Agreement

    2 Min Read

    Infineon Technologies AG and SolarEdge Technologies, Inc. announced the signing of a multi-year Capacity Reservation Agreement (CRA).

    Extending the existing partnership, Infineon will supply SolarEdge with critical components for a variety of SolarEdge products. In addition to the CRA, the companies will collaborate on the development of future technologies and cutting-edge solar products based on wide-bandgap (WBG) materials that are key for global green energy supplies. 

    “We are excited to expand our strategic partnership with SolarEdge to shape innovation in green energy technologies and decarbonization”, said Andreas Urschitz, Chief Marketing Officer at Infineon. “Our long-lasting collaboration is an enormous asset for both companies that paves the way for breakthrough-innovation and accelerated growth, as we combine our expertise and resources. With the latest investments in silicon carbide (SiC) and gallium nitride (GaN) manufacturing capacity, Infineon underlines its commitment to be a leading partner in climate technologies such as solar power.”

    Uri Bechor, Chief Operating Officer at SolarEdge, said: “Securing the capacity levels of critical components such as power and wide-bandgap from Infineon enhances SolarEdge’s supply chain resiliency. This Capacity Reservation Agreement with Infineon is in line with our strategy to continue leading the global industry in solar energy advancement.”

    Original – Infineon Technologies

    Comments Off on Infineon and SolarEdge Sign Multi-Year Supplier Capacity Reservation Agreement
  • onsemi and Magna Sign Strategic Agreements to Invest in Silicon Carbide

    onsemi and Magna Sign Strategic Agreements to Invest in Silicon Carbide

    2 Min Read

    onsemi and Magna announced a long-term supply agreement (LTSA) for Magna to integrate onsemi’s EliteSiC intelligent power solutions into its eDrive systems.

    By integrating onsemi’s industry-leading EliteSiC MOSFET technology, Magna eDrive systems can offer better cooling performance and faster acceleration and charging rates, improving efficiency and increasing the range of electric vehicles (EVs). Additionally, onsemi’s end-to-end silicon carbide (SiC) manufacturing capability, combined with its ability to ramp production quickly, improves Magna’s vertical integration and simplifies its supply chain to meet the growing demand for its SiC-based products for EVs.

    “With range anxiety still a top deterrent to EV adoption, our technology enables Magna to go further, easing the transition to an electrified future,” said Asif Jakwani, senior vice president and general manager, Advanced Power Division, onsemi. “Our latest EliteSiC MOSFET technology enables increased power density and higher efficiency in traction inverters, resulting in improved gas-equivalent miles per gallon without compromising driving dynamics and safety.”

    Simultaneous with the signing of the LTSA, the companies entered a separate agreement for Magna to also invest approximately $40 million for the procurement of new SiC equipment at onsemi’s New Hampshire and Czech Republic facilities to ensure access to future supply.

    “We believe that a secure supply of silicon carbide chips will be critical to our ability to continue delivering innovative and efficient eDrive systems for our customers,” said Diba Ilunga, president Magna Powertrain. “Accordingly, we are both investing to grow SiC production capacity, and establishing the commercial basis for long-term supply of SiC-based chips to advance our electrification strategy and outpace the competition.”

    Silicon carbide is a wide bandgap semiconductor substrate that is ideal for high-temperature, high-power applications such as electric vehicles, but it is incredibly difficult to produce. With a limited number of manufacturers and significant demand for SiC-based designs, OEMs and automotive suppliers are increasingly looking to secure long-term, reliable supply.

    Original – onsemi

    Comments Off on onsemi and Magna Sign Strategic Agreements to Invest in Silicon Carbide