-
GaN / LATEST NEWS / SiC / WBG2 Min Read
AIXTRON SE supports Nexperia B.V. in the ramp-up of its 200mm volume production for silicon carbide (SiC) and gallium nitride (GaN) power devices. With the new G10-SiC for the 200mm SiC volume ramp, Nexperia is placing a repeat order for AIXTRON SiC tools. This is complemented by an order for AIXTRON G10-GaN tools.
Both GaN and SiC epitaxial films are essential for the design of next-generation energy-efficient Field-Effect (FET) or Metal-Oxide-Field Effect (MOSFET) transistors to be used in various power conversion applications ranging from data centers and solar inverters in electric vehicles (EV) or trains.
Nexperia has decades of experience in the development of power devices, achieving more than 2.1 billion USD in revenue in 2023. After releasing its first GaN FET device in 2019 and its first SiC MOSFET in 2023, Nexperia continues to expand its portfolio with new high-reliability and power-efficient devices.
Nexperia, headquartered in Nijmegen (Netherlands), operates front-end factories in Hamburg (Germany) and Greater Manchester (England). The AIXTRON epitaxy systems will be installed at Nexperia’s wafer fab in Hamburg (Germany), further strengthening the semiconductor production capabilities in the region. Nexperia’s Hamburg site produces approximately 100 billion discrete semiconductors annually, accounting for about a quarter of the global production of this type of products.
“We are honored to strengthen our alliance with Nexperia, a pivotal player in the semiconductor landscape. Our G10 epitaxy solutions are at the heart of this collaboration, bolstering Nexperia’s growth strategies and enabling the high-volume production of wide bandgap semiconductors for commercial applications. Together, we are setting the pace for the industry’s transition to more energy-efficient SiC and GaN solutions”, said Dr. Felix Grawert, CEO and President of AIXTRON SE.
“As we advance our technological capabilities and market presence in high-power semiconductor production, our strategic partnership with AIXTRON is transformative. Integrating the G10 systems will significantly enhance our wide bandgap technology development and production capabilities. We build on AIXTRON’s proven uniformity and leverage the additional productivity gains of AIXTRON’s G10 tools to scale up our production efficiently and cost-effectively. With the new G10 tools in our Hamburg facility, we are poised for further advancements in our production capabilities,” said Achim Kempe, COO at Nexperia B.V.
Original – AIXTRON
-
GaN / LATEST NEWS / WBG3 Min Read
Efficient Power Conversion (EPC) announced that it has moved one step closer to achieving preeminence in the gallium nitride (GaN) power semiconductor industry, as its intellectual property rights to this revolutionary technology were upheld for the third time in three months. The next-generation wide bandgap semiconductors developed by EPC are essential to artificial intelligence (AI), satellites, fast chargers, lidar, humanoid robots and many other transformational technologies.
The U.S. International Trade Commission (ITC) found two of EPC’s key patents valid and one, the Company’s foundational patent, infringed by Innoscience (Zhuhai) Technology Co., Ltd. and its affiliate, Innoscience America, Inc. The ITC’s recommendation comes on the heels of two recent decisions from the China National Intellectual Property Administration (CNIPA), which similarly validated EPC’s counterpart patents in China. The ITC initial determination is a significant milestone in solidifying EPC’s leadership in wide bandgap semiconductors and could lead to a ban later this year on importation of Innoscience’s infringing products into the United States.
“The ITC’s finding that Innoscience uses our patented technology without authorization puts EPC in an enviable position, as U.S. and Chinese regulatory bodies have upheld the validity of our patents,” said Alex Lidow, CEO and Co-Founder of EPC.
“The Commission’s recommendations validate nearly two decades of hard work, resources and R&D that went into developing EPC’s uniquely valuable intellectual property portfolio,” Dr. Lidow added.
Over the last 15 years, EPC has capitalized on its first-mover advantage to develop a broad portfolio of over 200 GaN-related patents and over 150 products, which include its rapidly growing family of integrated circuits, automotive qualified and radiation hardened devices.
Compared with traditional silicon-based power devices, GaN represents a significant leap, with higher efficiency, faster switching speeds, smaller size and lower cost. GaN power devices are integral to self-driving vehicles, medical and communications devices, next-generation rapid chargers, drones, satellites, data centers, e-bikes, solar power systems and humanoid robots, among many other applications. Most notably, EPC’s cutting-edge semiconductors are central to powering the AI revolution by significantly freeing up space for extra computing power while simultaneously reducing energy consumption.
The ITC’s preliminary ruling found both U.S. patents that EPC asserted against Innoscience valid. It also found “infringement [by Innoscience] of U.S. Patent No. 8,350,294,” EPC’s foundational patent used broadly across multiple industries. The second EPC patent, U.S. Patent No. 8,404,508, was found valid, but not infringed by Innoscience. The Commission’s final determination is expected to be issued on November 5, 2024.
Original – Efficient Power Conversion
-
LATEST NEWS3 Min Read
The third edition of the second-level master’s program in “Power Electronics Devices and Technologies” organized by the Department of Electrical, Electronic and Information Engineering (DIEEI) of the University of Catania together with STMicroelectronics has been announced.
The goal of the master’s program is to train specialists in technologies based on Wide Band-Gap semiconductors, the new frontier of power electronics that ensures more efficient performance in line with the sustainable development goals defined by Agenda 2030. These technologies are for use in production processes in industries such as automotive, renewable energy, and electrical energy conversion and storage.
“There is a strong market demand for highly specialized professionals trained in the field of power electronics, to meet the needs identified by macro-trends in terms of energy efficiency and the electrification of mobility in the frame of sustainable development,”said Professor Mario Cacciato, coordinator of the master’s program.
“This second-level master’s program offers to master’s graduates in different STEM disciplines opportunities to complete the training and focus it on topics of great interest for research and industry. In addition, the master’s program constitutes a synergistic model for the professional development of young talent from academia together with the industrial world, as effectively demonstrated by the first two editions of the master’s program.”
“STMicroelectronics’ site in Catania is a center of excellence in the European arena for power electronics technologies, thanks in part to the strategic investment in the vertically integrated production of Silicon Carbide devices,” said Gianfranco Di Marco, Power Transistor Sub-Group, Chief of staff and Technical Communication Manager at STMicroelectronics.
“Training specialized profiles and skills in the field of power electronics with multidisciplinary knowledge is essential for fostering technological innovation. This third edition follows the success of the previous ones with theoretical lectures held at University of Catania and internships at ST’s Catania site allowing students to experience working with a leader in power semiconductors. This will forge a close connection between the world of education and the world of work, an essential prerequisite for the sustainable development of the area, and the creation of new career opportunities for students.”
The second-level master’s program offers theoretical and practical training, divided into 7 teaching modules in English. Lectures will be taught by university professors and appropriate specialists from within STMicroelectronics, who will also act as mentors during their internship in the company’s departments and research laboratories. Some lectures, moreover, will be held at ST’s Catania site. Finally, students will participate in seminars held by experts from several major world’s corporations in the industry.
The training course is open to those with a master’s degree obtained in the last five years in:
- Electronic engineering (LM/29);
- Electrical engineering (LM/28);
- Computer and information engineering (LM/32);
- Mechanical engineering (LM/33);
- Chemical engineering (LM22);
- Automation engineering (LM25);
- Telecommunications engineering (LM/27);
- Physics (LM17);
- Materials science and engineering (LM/53);
- Chemical sciences (LM/54);
Proficiency in English is required.
A maximum of 30 participants will be admitted to this master’s degree program. The top 10 in the eligible list will be awarded a scholarship. Those ranking from 11th to 20th will receive a contribution to the tuition fee. Applications must be submitted by September 30, 2024. More information is available here.
The Scientific Committee members are the University of Catania faculty members Mario Cacciato (coordinator), Giuseppe Compagnini, Guglielmo Guido Condorelli, Salvatore Mirabella, Salvatore Pennisi and Antonio Terrasi; and Giuseppe Arena, Michele Calabretta, Gianfranco Di Marco, Vincenzo Randazzo, Mario Saggio, Rosario Scollo, Filippo Scrimizzi and Gabriele Bellocchi of STMicroelectronics.
Original – STMicroelectronics
-
LATEST NEWS / PRODUCT & TECHNOLOGY / SiC / WBG3 Min Read
Vishay Intertechnology, Inc. introduced 16 new Gen 3 1200 V silicon carbide (SiC) Schottky diodes. Featuring a merged PIN Schottky (MPS) design, the Vishay Semiconductors devices combine high surge current robustness with low forward voltage drop, capacitive charge, and reverse leakage current to increase efficiency and reliability in switching power designs.
The next-generation SiC diodes released today consist of 5 A to 40 A devices in the TO-220AC 2L, TO-247AD 2L, and TO-247AD 3L through-hole and D2PAK 2L (TO-263AB 2L) surface-mount packages. The diodes offer a low capacitance charge down to 28 nC, while their MPS structure — which features a backside thinned via laser annealing technology — delivers a reduced forward voltage drop of 1.35 V. In addition, the devices’ low typical reverse leakage current down to 2.5 µA at 25 °C reduces conduction losses, ensuring high system efficiency during light loads and idling. Unlike ultrafast diodes, the Gen 3 devices have virtually no recovery tail, which further improves efficiency.
Typical applications for the diodes will include AC/DC PFC and DC/DC ultra high frequency output rectification in FBPS and LLC converters for solar power inverters; energy storage systems; industrial drives and tools; and datacenters. For the harsh environments of these applications, the devices combine operating temperatures to +175 °C with forward surge ratings to 260 A for high robustness. In addition, diodes in the D2PAK 2L package feature a molding compound with a high CTI ≥ 600, ensuring excellent electrical insultation at elevated voltages.
Offering high reliability, the RoHS-compliant and halogen-free devices have passed higher temperature reverse bias (HTRB) testing of 2000 hours and temperature cycling testing of 2000 thermal cycles.
Device Specification Table:
Part # IF(AV) (A) IFSM (A) VF at IF (V) QC (nC) Configuration Package VS-3C05ET12T-M3 5 42 1.35 28 Single TO-220AC 2L VS-3C10ET12T-M3 10 84 1.35 55 Single TO-220AC 2L VS-3C15ET12T-M3 15 110 1.35 81 Single TO-220AC 2L VS-3C20ET12T-M3 20 180 1.35 107 Single TO-220AC 2L VS-3C05ET12S2L-M3 5 42 1.35 28 Single D2PAK 2L VS-3C10ET12S2L-M3 10 84 1.35 55 Single D2PAK 2L VS-3C15ET12S2L-M3 15 110 1.35 81 Single D2PAK 2L VS-3C20ET12S2L-M3 20 180 1.35 107 Single D2PAK 2L VS-3C10EP12L-M3 10 84 1.35 55 Single TO-247AD 2L VS-3C15EP12L-M3 15 110 1.35 81 Single TO-247AD 2L VS-3C20EP12L-M3 20 180 1.35 107 Single TO-247AD 2L VS-3C30EP12L-M3 30 260 1.35 182 Single TO-247AD 2L VS-3C10CP12L-M3 2 x 5 42 1.35 28 Common cathode TO-247AD 3L VS-3C20CP12L-M3 2 x 10 84 1.35 55 Common cathode TO-247AD 3L VS-3C30CP12L-M3 2 x 15 110 1.35 81 Common cathode TO-247AD 3L VS-3C40CP12L-M3 2 x 20 180 1.35 107 Common cathode TO-247AD 3L Samples and production quantities of the new SiC diodes are available now, with lead times of 13 weeks.
Original – Vishay Intertechnology